996 resultados para Heavy particles (Nuclear physics)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neutron multidetector DéMoN has been used to investigate the symmetric splitting dynamics in the reactions 58.64Ni + 208Pb with excitation energies ranging from 65 to 186 MeV for the composite system. An analysis based on the new backtracing technique has been applied on the neutron data to determine the two-dimensional correlations between the parent composite system initial thermal energy (EthCN) and the total neutron multiplicity (νtot), and between pre- and post-scission neutron multiplicities (νpre and νpost, respectively). The νpre distribution shape indicates the possible coexistence of fast-fission and fusion-fission for the system 58Ni + 208Pb (Ebeam = 8.86 A MeV). The analysis of the neutron multiplicities in the framework of the combined dynamical statistical model (CDSM) gives a reduced friction coefficient β = 23 ± 2512 × 1021 s-1, above the one-body dissipation limit. The corresponding fission time is τf = 40 ± 4620 × 10-21 s. © 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of a strong magnetic field on the neutron-drip transition in the crust of a magnetar is studied. The composition of the crust and the neutron-drip threshold are determined numerically for different magnetic field strengths using the experimental atomic mass measurements from the 2012 Atomic Mass Evaluation complemented with theoretical masses calculated from the Brussels-Montreal Hartree-Fock-Bogoliubov nuclear mass model HFB-24. The equilibrium nucleus at the neutron-drip point is found to be independent of the magnetic field strength. As demonstrated analytically, the neutron-drip density and pressure increase almost linearly with the magnetic field strength in the strongly quantizing regime for which electrons lie in the lowest Landau level. For weaker magnetic fields, the neutron-drip density exhibits typical quantum oscillations. In this case, the neutron-drip density can be either increased by about 14% or decreased by 25% depending on the magnetic field strength. These variations are shown to be almost universal, independently of the nuclear mass model employed. These results may have important implications for the physical interpretation of timing irregularities and quasiperiodic oscillations detected in soft gamma-ray repeaters and anomalous x-ray pulsars, as well as for the cooling of strongly magnetized neutron stars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite their astrophysical significanceas a major contributor to cosmic nucleosynthesis and as distance indicators in observational cosmologyType Ia supernovae lack theoretical explanation. Not only is the explosion mechanism complex due to the interaction of (potentially turbulent) hydrodynamics and nuclear reactions, but even the initial conditions for the explosion are unknown. Various progenitor scenarios have been proposed. After summarizing some general aspects of Type Ia supernova modeling, recent simulations of our group are discussed. With a sequence of modeling starting (in some cases) from the progenitor evolution and following the explosion hydrodynamics and nucleosynthesis we connect to the formation of the observables through radiation transport in the ejecta cloud. This allows us to analyze several models and to compare their outcomes with observations. While pure deflagrations of Chandrasekhar-mass white dwarfs and violent mergers of two white dwarfs lead to peculiar events (that may, however, find their correspondence in the observed sample of SNe Ia), only delayed detonations in Chandrasekhar-mass white dwarfs or sub-Chandrasekhar-mass explosions remain promising candidates for explaining normal Type Ia supernovae. © 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a leading facility in laser-driven nuclear physics, ELI-NP will develop innovative research in the fields of materials behavior in extreme environments and radiobiology, with applications in the development of accelerator components, new materials for next generation fusion and fission reactors, shielding solutions for equipment and human crew in long term space missions and new biomedical technologies. The specific properties of the laser-driven radiation produced with two lasers of 1 PW at a pulse repetition rate of 1 Hz each are an ultra-short time scale, a relatively broadband spectrum and the possibility to provide simultaneously several types of radiation. Complex, cosmic-like radiation will be produced in a ground-based laboratory allowing comprehensive investigations of their effects on materials and biological systems. The expected maximum energy and intensity of the radiation beams are 19 MeV with 10^9 photon/pulse for photon radiation, 2 GeV with 108 electron/pulse for electron beams, 60 MeV with 10^12 proton/pulse for proton and ion beams and 60 MeV with 107 neutron/pulse for a neutron source. Research efforts will be directed also towards measurements for radioprotection of the prompt and activated dose, as a function of laser and target characteristics and to the development and testing of various dosimetric methods and equipment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de doutoramento, História e Filosofia das Ciências, Universidade de Lisboa, Faculdade de Ciências, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research undertaken was to obtain absolute Raman intensities for the symmetric stretching vibrations of the methyl halides, CH3X with (X=F, CI, Br), by experiment and theory. The intensities were experimentally measured using the Ar+ ion gas laser as excitation source, a Spex 14018 double monochromator and a RCA C-31034 photomultiplier tube as detector. These intensities arise from changes in the derivative of the polarizability (8 a'), with respect to vibration along a normal coordinate (8qi). It was intended that these derivatives obtained with respect to normal coordinates would be converted to derivatives with respect to internal coordinates, for a quantitative comparison with theory. Theoretical numerical polarizability derivatives for the stretching vibrations are obtained using the following procedure. A vibration was simulated in the molecule by increasi.ng and decreasing the respective bond by the amount ±o.oosA for the C-H bonds and ±o.oIA for the C-X (X=F, CI, Br) bond. The derivative was obtained by taking the difference in the polarizability for the equilibrium geometry and the geometry when a particular bond is changed. This difference, when divided by the amount of change in each bond and the number of bonds present results in the derivative of the polarizability with respect to internal coordinate i.e., !1u/!1r. These derivatives were obtained by two methods: I} ab initio molecular orbital calculation and 2} theory of atoms in molecules (AIM) analysis. Due to errors in the experimental setup only a qualitative analysis of the results was undertaken relative to the theory. Theoretically it is predicted that the symmetric carbonhalogen stretch vibrations are more intense than the respective carbon-hydrogen stretch, but only for the methyl chloride and bromide. The carbon fluorine stretch is less intense than the carbon-hydrogen stretch, a fact which is attributed to the small size and high electronegativity of the fluorine atom. The experimental observations are seen to agree qualitatively with the theory results. It is hoped that when the experiment is repeated, a quantitative comparison can be made. The analysis by the theory of atoms in molecules, along with providing polarizabilities and polarizability derivatives, gives additional information outlined below. The theory provides a pictorial description of the main factors contributing to the molecular polarizability and polarizability derivative. These contributions are from the charge transfer and atomic dipole terms i.e., transfer of charge from one atom to another and the reorganization of atomic electronic charge distribution due to presence of an electric field. The linear relationship between polarizability and molecular volume was also observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the spectrum and magnetic properties of double quantum dots in the lowest Landau level for different values of the hopping and Zeeman parameters by means of exact diagonalization techniques in systems of N=6 and 7 electrons and a filling factor close to 2. We compare our results with those obtained in double quantum layers and single quantum dots. The Kohn theorem is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A deformed-jellium model is used to calculate the fission barrier height of positive doubly charged sodium clusters within an extended Thomas-Fermi approximation. The fissioning cluster is continuously deformed from the parent configuration until it splits into two fragments. Although the shape of the fission barrier obviously depends on the parametrization of the fission path, we have found that remarkably, the maximum of the barrier corresponds to a configuration in which the emerging fragments are already formed and rather well apart. The implication of this finding in the calculation of critical numbers for fission is illustrated in the case of multiply charged Na clusters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report experimental studies and suggest a quantitative model of spin relaxation in Mn12 acetate in a pulsed magnetic field in the temperature range 1.95.0 K. When the field applied along the anisotropy axis is swept at 140 T/s through a nonmagnetized Mn12 acetate sample, the samples magnetization switches, within a few milliseconds, from zero to saturation at a well-defined field whose value depends on temperature but is quantized in units of 0.46 T. A quantitative explanation of the effect is given in terms of a spin-phonon avalanche combined with thermally assisted resonant spin tunneling.