903 resultados para Heat transfer coefficient


Relevância:

80.00% 80.00%

Publicador:

Resumo:

ROBERT EVAPORATORS in Australian sugar factories are traditionally constructed with 44.45 mm outside diameter stainless steel tubes of ~2 m length for all stages of evaporation. There are a few vessels with longer tubes (up to 2.8 m) and smaller and larger diameters (38.1 and 50.8 mm). Queensland University of Technology is undertaking a study to investigate the heat transfer performance of tubes of different lengths and diameters for the whole range of process conditions typically encountered in the evaporator set. Incorporation of these results into practical evaporator designs requires an understanding of the cost implications for constructing evaporator vessels with calandrias having tubes of different dimensions. Cost savings are expected for tubes of smaller diameter and longer length in terms of material, labour and installation costs in the factory. However these savings must be considered in terms of the heat transfer area requirements for the evaporation duty, which will likely be a function of the tube dimensions. In this paper a capital cost model is described which provides a relative cost of constructing and installing Robert evaporators of the same heating surface area but with different tube dimensions. Evaporators of 2000, 3000, 4000 and 5000 m2 are investigated. This model will be used in conjunction with the heat transfer efficiency data (when available) to determine the optimum tube dimensions for a new evaporator at a specified evaporation duty. Consideration is also given to other factors such as juice residence time (and implications for sucrose degradation and control) and droplet de-entrainment in evaporators of different tube dimensions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerical simulation of a geothermal reservoir, modelled as a bottom-heated square box, filled with water-CO2 mixture is presented in this work. Furthermore, results for two limiting cases of a reservoir filled with either pure water or CO2 are presented. Effects of different parameters including CO2 concentration as well as reservoir pressure and temperature on the overall performance of the system are investigated. It has been noted that, with a fixed reservoir pressure and temperature, any increase in CO2concentration leads to better performance, i.e. stronger convection and higher heat transfer rates. With a fixed CO2 concentration, however, the reservoir pressure and temperature can significantly affect the overall heat transfer and flow rate from the reservoir. Details of such variations are documented and discussed in the present paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study explores reproducing the closest geometry of a high pressure ratio single stage radial-inflow turbine applied in the Sundstrans Power Systems T-100 Multipurpose Small Power Unit. The commercial software ANSYS-Vista RTD along with a built in module, BladeGen, is used to conduct a meanline design and create 3D geometry of one flow passage. Carefully examining the proposed design against the geometrical and experimental data, ANSYS-TurboGrid is applied to generate computational mesh. CFD simulations are performed with ANSYS-CFX in which three-dimensional Reynolds-Averaged Navier-Stokes equations are solved subject to appropriate boundary conditions. Results are compared with numerical and experimental data published in the literature in order to generate the exact geometry of the existing turbine and validate the numerical results against the experimental ones.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Taking into consideration of growing energy needs and concern for environmental degradation, clean and inexhaustible energy source, such as solar energy, is receiving greater attention for various applications. The use of solar energy system reduces pollution, waste and has little or no harmful effects on the environment. It is appreciated that this source of energy can be complementary rather than being competitive to conventional energy sources. In order to collect and harness energy from the sun, a solar collector is essential. A solar collector is basically a heat exchanger that transforms solar radiant energy into heat or thermal energy. Improvement of performance is essential for commercial acceptance of their use in such applications. Many studies have been undertaken on the enhancement of thermal performance of solar collectors, using diverse materials of various shapes, dimensions and layouts. In the literature, various collector designs have been proposed and tested with the objective of meeting these requirements [1-8]. Omer et al. [1] found the efficiency of a solar collector of about 70% in a solar assisted heat pump system. Traditional solar collectors are single phase collectors, in which the working fluid is either air or water. Different modifications are suggested and applied to improve the heat transfer between the absorber and working fluid in a collector. These modifications include the use of absorber with fins attached [2,3], corrugated absorber [4,5], matrix type absorber [6], V-groove solar air collector [7]. Karim et al. [8] approached a review of design and construction of three types (flat, vee-grooved, and finned) of air collectors. Two-phase collectors, on the other hand, have significant potential for continuous operation round the clock, when used in conjunction with a compressor, as found in a solar assisted heat-pump cycle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a numerical model for understanding particle transport and deposition in metal foam heat exchangers. Two-dimensional steady and unsteady numerical simulations of a standard single row metal foam-wrapped tube bundle are performed for different particle size distributions, i.e. uniform and normal distributions. Effects of different particle sizes and fluid inlet velocities on the overall particle transport inside and outside the foam layer are also investigated. It was noted that the simplification made in the previously-published numerical works in the literature, e.g. uniform particle deposition in the foam, is not necessarily accurate at least for the cases considered here. The results highlight the preferential particle deposition areas both along the tube walls and inside the foam using a developed particle deposition likelihood matrix. This likelihood matrix is developed based on three criteria being particle local velocity, time spent in the foam, and volume fraction. It was noted that the particles tend to deposit near both front and rear stagnation points. The former is explained by the higher momentum and direct exposure of the particles to the foam while the latter only accommodate small particles which can be entrained in the recirculation region formed behind the foam-wrapped tubes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A numerical study is carried out to investigate the transition from laminar to chaos in mixed convection heat transfer inside a lid-driven trapezoidal enclosure. In this study, the top wall is considered as isothermal cold surface, which is moving in its own plane at a constant speed, and a constant high temperature is provided at the bottom surface. The enclosure is assumed to be filled with water-Al2O3 nanofluid. The governing Navier–Stokes and thermal energy equations are expressed in non-dimensional forms and are solved using Galerkin finite element method. Attention is paid in the present study on the pure mixed convection regime at Richandson number, Ri = 1. The numerical simulations are carried out over a wide range of Reynolds (0.1 ≤ Re ≤ 103) and Grashof (0.01 ≤ Gr ≤ 106) numbers. Effects of the presence of nanofluid on the characteristics of mixed convection heat transfer are also explored. The average Nusselt numbers of the heated wall are computed to demonstrate the influence of flow parameter variations on heat transfer. The corresponding change of flow and thermal fields is visualized from the streamline and the isotherm contour plots.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Graphene/hexagonal boron nitride (G/h-BN) heterostructure has attracted tremendous research efforts owing to its great potential for applications in nano-scale electronic devices. In such hybrid materials, tilt grain boundaries (GBs) between graphene and h-BN grains may have unique physical properties, which have not been well understood. Here we have conducted non-equilibrium molecular dynamics simulations to study the energetic and thermal properties of tilt GBs in G/h-BN heterostructures. The effect of misorientation angles of tilt GBs on both GB energy and interfacial thermal conductance are investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thermal transport in graphene-polymer nanocomposite is complicated and has not been well understood. The interfacial thermal transport between graphene nanofiller and polymer matrix is expected to play a key role in controlling the overall thermal performance of graphene-polymer nanocomposite. In this work, we investigated the thermal transport across graphene-polymer interfaces functionalized with end-grafted polymer chains using molecular dynamics simulations. The effects of grafting density, chain length and initial morphology on the interfacial thermal transport were systematically investigated. It was found that end-grafted polymer chains could significantly enhance interfacial thermal transport and the underlying mechanism was considered to be the enhanced vibration coupling between graphene and polymer. In addition, a theoretical model based on effective medium theory was established to predict the thermal conductivity in graphene-polymer nanocomposites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of fluid flow, surface roughness and immersion time on the electrochemical behaviour of carbon steel in coal seam gas produced water under static and hydrodynamic conditions has been studied. The disc electrode surface morphology before and after the corrosion test was characterized using scanning electron microscopy (SEM). The corrosion product was examined using X-ray photoelectron spectroscopy (XPS) and X-ray diffractometry (XRD).The results show that the anodic current density increased with increasing surface roughness and consequently a decrease in corrosion surface resistance. Under dynamic flow conditions, the corrosion rate increased with increasing rotating speed due to the high mass transfer coefficient and formation of non-protective akaganeite β- FeO(OH) and goethite α- FeO(OH) corrosion scale at the electrode surface.The corrosion rate was lowest at 0 rpm.The corrosion rate decreased in both static and dynamic conditions with increasing immersion time. The decrease in corrosion rate is attributed to the deposition of corrosion products on the electrode surface. SEM results revealed that the rougher surface exhibited a great tendency toward pitting corrosion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Double diffusive Marangoni convection flow of viscous incompressible electrically conducting fluid in a square cavity is studied in this paper by taking into consideration of the effect of applied magnetic field in arbitrary direction and the chemical reaction. The governing equations are solved numerically by using alternate direct implicit (ADI) method together with the successive over relaxation (SOR) technique. The flow pattern with the effect of governing parameters, namely the buoyancy ratio W, diffusocapillary ratio w, and the Hartmann number Ha, is investigated. It is revealed from the numerical simulations that the average Nusselt number decreases; whereas the average Sherwood number increases as the orientation of magnetic field is shifted from horizontal to vertical. Moreover, the effect of buoyancy due to species concentration on the flow is stronger than the one due to thermal buoyancy. The increase in diffusocapillary parameter, w caus

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article, natural convection boundary layer flow is investigated over a semi-infinite horizontal wavy surface. Such an irregular (wavy) surface is used to exchange heat with an external radiating fluid which obeys Rosseland diffusion approximation. The boundary layer equations are cast into dimensionless form by introducing appropriate scaling. Primitive variable formulations (PVF) and stream function formulations (SFF) are independently used to transform the boundary layer equations into convenient form. The equations obtained from the former formulations are integrated numerically via implicit finite difference iterative scheme whereas equations obtained from lateral formulations are simulated through Keller-box scheme. To validate the results, solutions produced by above two methods are compared graphically. The main parameters: thermal radiation parameter and amplitude of the wavy surface are discussed categorically in terms of shear stress and rate of heat transfer. It is found that wavy surface increases heat transfer rate compared to the smooth wall. Thus optimum heat transfer is accomplished when irregular surface is considered. It is also established that high amplitude of the wavy surface in the boundary layer leads to separation of fluid from the plate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study is concerned with transient natural convection in an isosceles triangular enclosure subject to non-uniformly cooling at the inclined surfaces and uniformly heating at the base. The numerical simulations of the unsteady flows over a range of Rayleigh numbers and aspect ratios are carried out using Finite Volume Method. Since the upper inclined surfaces are linearly cooled and the bottom surface is heated, the flow is potentially unstable. It is revealed from the numerical simulations that the transient flow development in the enclosure can be classified into three distinct stages; an early stage, a transitional stage, and a steady stage. The flow inside the enclosure depends significantly on the governing parameters, Rayleigh number and aspect ratio. The effect of Rayleigh number and aspect ratio on the flow development and heat transfer rate are discussed. The key finding for this study is to analyze the pitchfork bifurcation of the flow about the geometric center line. The heat transfer through the roof and the ceiling as a form of Nusselt number is reported in this study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerical solutions of flow and heat transfer process on the unsteady flow of a compressible viscous fluid with variable gas properties in the vicinity of the stagnation line of an infinite swept cylinder are presented. Results are given for the case where the unsteady temperature field is produced by (i) a sudden change in the wall temperature (enthalpy) as the impulsive motion is started and (ii) a sudden change in the free-stream velocity. Solutions for the simultaneous development of the thermal and momentum boundary layers are obtained by using quasilinearization technique with an implicit finite difference scheme. Attention is given to the transient phenomenon from the initial flow to the final steady-state distribution. Results are presented for the skin friction and heat transfer coefficients as well as for the velocity and enthalpy profiles. The effects of wail enthalpy parameter, sweep parameter, fluid properties and transpiration cooling on the heat transfer and skin friction are considered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of the magnetic field on the unsteady flow over a stretching surface in a rotating fluid has been studied. The unsteadiness in the flow field is due to the time-dependent variation of the velocity of the stretching surface and the angular velocity of the rotating fluid. The Navier-Stokes equations and the energy equation governing the flow and the heat transfer admit a self-similar solution if the velocity of the stretching surface and the angular velocity of the rotating fluid vary inversely as a linear function of time. The resulting system of ordinary differential equations is solved numerically using a shooting method. The rotation parameter causes flow reversal in the component of the velocity parallel to the strerching surface and the magnetic field tends to prevent or delay the flow reversal. The surface shear stresses dong the stretching surface and in the rotating direction increase with the rotation parameter, but the surface heat transfer decreases. On the other hand, the magnetic field increases the surface shear stress along the stretching surface, but reduces the surface shear stress in the rotating direction and the surface heat transfer. The effect of the unsteady parameter is more pronounced on the velocity profiles in the rotating direction and temperature profiles.