983 resultados para HYDRAULIC LIFT


Relevância:

10.00% 10.00%

Publicador:

Resumo:

3rd Historic Mortars Conference, 11-14 September 2013, Glasgow, Scotland

Relevância:

10.00% 10.00%

Publicador:

Resumo:

3rd Historic Mortars Conference, 11-14 September 2013, Glasgow, Scotland

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RESTAPIA 2012 - Int. Conf. on Rammed Earth Conservation, Valencia, 21-23 June 2012

Relevância:

10.00% 10.00%

Publicador:

Resumo:

International RILEM Workshop on Repairs Mortars for Historic Masonry, Technical University of Delft, 2009

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HMC08 - 1st Historical Mortars Conference: Characterization, Diagnosis, Conservation, Repair and Compatibilit, LNEC, Lisbon, 24-26 September 2008

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HMC08 - 1st Historical Mortars Conference: Characterization, Diagnosis, Conservation, Repair and Compatibility, LNEC, Lisbon, 24-26 September 2008

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2nd Historic Mortars Conference - HMC 2010 and RILEM TC 203-RHM Final Workshop, Prague, September 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enhanced biological phosphorus removal (EBPR) is the most economic and sustainable option used in wastewater treatment plants (WWTPs) for phosphorus removal. In this process it is important to control the competition between polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), since EBPR deterioration or failure can be related with the proliferation of GAOs over PAOs. This thesis is focused on the effect of operational conditions (volatile fatty acid (VFA) composition, dissolved oxygen (DO) concentration and organic carbon loading) on PAO and GAO metabolism. The knowledge about the effect of these operational conditions on EBPR metabolism is very important, since they represent key factors that impact WWTPs performance and sustainability. Substrate competition between the anaerobic uptake of acetate and propionate (the main VFAs present in WWTPs) was shown in this work to be a relevant factor affecting PAO metabolism, and a metabolic model was developed that successfully describes this effect. Interestingly, the aerobic metabolism of PAOs was not affected by different VFA compositions, since the aerobic kinetic parameters for phosphorus uptake, polyhydroxyalkanoates (PHAs) degradation and glycogen production were relatively independent of acetate or propionate concentration. This is very relevant for WWTPs, since it will simplify the calibration procedure for metabolic models, facilitating their use for full-scale systems. The DO concentration and aerobic hydraulic retention time (HRT) affected the PAO-GAO competition, where low DO levels or lower aerobic HRT was more favourable for PAOs than GAOs. Indeed, the oxygen affinity coefficient was significantly higher for GAOs than PAOs, showing that PAOs were far superior at scavenging for the often limited oxygen levels in WWTPs. The operation of WWTPs with low aeration is of high importance for full-scale systems, since it decreases the energetic costs and can potentially improve WWTP sustainability. Extended periods of low organic carbon load, which are the most common conditions that exist in full-scale WWTPs, also had an impact on PAO and GAO activity. GAOs exhibited a substantially higher biomass decay rate as compared to PAOs under these conditions, which revealed a higher survival capacity for PAOs, representing an advantage for PAOs in EBPR processes. This superior survival capacity of PAOs under conditions more closely resembling a full-scale environment was linked with their ability to maintain a residual level of PHA reserves for longer than GAOs, providing them with an effective energy source for aerobic maintenance processes. Overall, this work shows that each of these key operational conditions play an important role in the PAO-GAO competition and should be considered in WWTP models in order to improve EBPR processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of wastes and industrial by-products as building materials is an important issue in order to decrease costs with waste management and the embodied energy of building products. Scrap tire rubber has been studied as aggregate for cementitious materials. Natural hydraulic limes are natural binders with particular characteristics of both air and hydraulic binders. Their specifications became stricter with the last version of EN 459-1:2010. In this study scrap tire rubber was used as additional aggregate of mortars, based on NHL3.5 and natural sand. Different particle size fractions and proportions of scrap tire rubber were used: a mix obtained almost directly from industry (only after sieving for preparation of particle sizes similar to mortar aggregate) and separated fine, medium and coarse fractions; 0%, 18%, 36% and 54% weight of binder, corresponding to 2.5%, 5% and 7.5% weight of sand. The influence of the rubbers´ additions on the mortars´ fresh state, mechanical and physical performance is presented, namely by flow table consistency, water retention, fresh bulk density, dynamic elasticity modulus, flexural and compressive strength, open porosity and bulk density, capillary absorption, drying and thermal conductivity. The use of the rubber mix coming from the waste tire industry seems advantageous and may open possibilities for use as raw material by the mortars industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All over the world, many earth buildings are deteriorating due to lack of maintenance and repair. Repairs on rammed earth walls are mainly done with mortars, by rendering application; however, often the repair is inadequate, resorting to the use of incompatible materials, including cement-based mortars. It has been observed that such interventions, in walls that until that day only had presented natural ageing issues, created new problems, much more dangerous for the building than the previous ones, causing serious deficiencies in this type of construction. One of the problems is that the detachment of the new cement-based mortar rendering only occurs after some time but, until that occurrence, degradations develop in the wall itself. When the render detaches, instead of needing only a new render, the surface has to be repaired in depth, with a repair mortar. Consequently, it has been stablished that the renders, and particularly repair mortars, should have physical, mechanical and chemical properties similar to those of the rammed earth walls. This article intends to contribute to a better knowledge of earth-based mortars used to repair the surface of rammed earth walls. The studied mortars are based on four types of earth: three of them were collected from non-deteriorated parts of walls of unstabilized rammed earth buildings located in Alentejo region, south of Portugal; the fourth is a commercial earth, consisting mainly of clay. Other components were also used, particularly: sand to control shrinkage; binders stabilizers such as dry hydrated air-lime, natural hydraulic lime, Portland cement and natural cement; as well as natural vegetal fibers (hemp fibers). The experimental analysis of the mortars in the fresh state consisted in determining the consistency by flow table and the bulk density. In the hardened state, the tests made it possible to evaluate the following properties: linear and volumetric shrinkage; capillary water absorption; drying capacity; dynamic modulus of elasticity; flexural and compressive strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Al-Cu alloys are widely used in the aerospace and automotive industries due to their high specific strength in some tempered conditions. However, due to poor corrosion and wear resistance, they are often anodized and/or painted. Plasma nitriding has been proposed as an alternative, though the developments in this technique are still in a recent stage for Al alloys. Electrical characterization techniques are well implemented NDTs in the industry because of good accuracy associated with lower cost, compared to other methods. Some, like eddy currents and 4-point probe techniques, are often used in coating inspection. The objective of this study was to perform Al nitriding at low temperatures to minimize the tempering initial condition damage and to assess the feasibility of eddy currents technique as a method for evaluating surface properties. The work developed can be divided in two stages. The first one was the process tuning, done at the Shibaura Institute of Technology, in Tokyo; and the second was the electrical characterization done in Faculdade de Ciências e Tecnologia, UNL. Low temperature nitriding of AA2011 alloy specimens was successfully achieved. Electrical conductivity results show that lift-off measurements by eddy currents testing can be related to surface properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As intervenções arqueológicas concretizadas entre 1999-2001 permitiram o reconhecimento de contextos referentes ao Hospital Real de Todos-os-Santos, nomeadamente o claustro NE, bem como uma estrutura hidráulica no seu perímetro interno. A identificação do espólio cerâmico e vítreo aqui descartado permite, numa primeira fase, a aferição cronológica e tipológica destes e, consequentemente, do perfil funcional (utilitário, de cozinha e medicinal), numa tentativa de padronização do conjunto arte factual no edifício hospitalar e na cidade de Lisboa. Num segundo estágio, pretendese obter uma leitura concreta no que concerne ao período de utilização desta estrutura, indo de encontro às distintas áreas a vigorar no espaço claustral.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The construction industry is responsible for high energy and raw materials consumption. Thus, it is important to minimize the high energy consumption by taking advantage of renewable energy sources and reusing industrial waste, decreasing the extraction of natural materials. The mortars with incorporation of phase change materials (PCM) have the ability to regulate the temperature inside buildings, contributing to the thermal comfort and reduction of the use of heating and cooling equipment, using only the energy supplied by the sun. The simultaneous incorporation of PCM and fly ash (FA) can reduce the energy consumption and the amount of materials landfilled. However, the addition of these materials in mortars modifies its characteristics. The main purpose of this study was the production and characterization in the fresh and hardened state of mortars with incorporation of different contents of PCM and FA. The binders studied were aerial lime, hydraulic lime, gypsum and cement. The proportion of PCM studied was 0%, 20%, 40% and 60% of the mass of the sand. The content of fly ash added to the mortars was 0%, 20%, 40% and 60% of the mass of the binder. It was possible to observe that the incorporation of PCM and fly ash in mortars caused differences in properties such as workability, microstructure, water absorption, compressive strength, flexural strength and adhesion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study deals with the characterization of masonry mortars produced with different binders and sands. Several properties of the mortars were determined, like consistence, compressive and flexural strengths, shrinkage and fracture energy. By varying the type of binder (Portland cement, hydrated lime and hydraulic lime) and the type of sand (natural or artificial), it was possible to draw some conclusions about the influence of the composition on mortars properties. The results showed that the use of Portland cement makes the achievement of high strength classes easier. This was due to the slower hardening of lime compared with cement. The results of fracture energy tests showed much higher values for artificial sand mortars when compared with natural sand ones. This is due to the higher roughness of artificial sand particles which provided better adhesion between sand and binder.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently we are witnessing a huge concern of society with the parameters of comfort of the buildings and the energetic consumptions. It is known that there is a huge consumption of non-renewable sources of energy. Thus, it is urgent to develop and explore ways to take advantage of renewable sources of energy by improving the energy efficiency of buildings. The mortars with incorporation of phase change materials (PCM) have the ability to regulate the temperature inside buildings, contributing to the thermal comfort and reduction of the use of heating and cooling equipment, using only the energy supplied by the sun. However, the incorporation of phase change materials in mortars modifies its characteristics. The main purpose of this study was mechanical and thermal characterization of mortars with incorporation of PCM in mortars based in different binders. The binders studied were aerial lime, hydraulic lime, gypsum and cement. For each type of binder a reference composition (0% PCM) and a composition with incorporation of 40% of PCM were developed. It was possible to observe that the incorporation of PCM in mortars caused differences in properties such as workability, compressive strength, flexural strength and adhesion, however leads to an improvement of thermal behavior.