943 resultados para HSP70 Heat-Shock Proteins
Resumo:
Irreversible binding of key flavour disulphides to ovalbumin has been shown previously to occur in model systems. The extent of binding is determined by the availability of the sulphydryl groups to participate in disulphide exchange, influenced either by pH, or the state of the protein (native or heat-denatured). In this study, two further proteins, one with sulphydryl groups available in the native state (beta-lactoglobulin) and one with no sulphydryl groups in the native state (lysozyme) were used to confirm this hypothesis. When the investigation was extended to real food systems, a similar effect was shown when a commercial meat flavouring containing disulphides was added to heat-denatured ovalbumin. Furthermore, comparison of the volatiles generated from onions, cooked either alone, or in the presence of meat, showed a significant reduction of key onion-derived disulphides when cooked in the presence of meat, and an even greater reduction of trisulphides. These findings may have implications for consumer acceptance of food products; where these compounds are used as flavourings or where they occur naturally.
Resumo:
sSPI, 7S, and 11S globulin at 12% (w/v) protein concentration, at neutral pH, did not form gels when heat-treated (90 degreesC, 15 min) or when high pressure-treated (300-700 MPa), except for the I IS, which formed a gel when heat-treated. The combination of heat and pressure (that is heating the solutions in a water bath and then pressure-treating at room temperature or the reverse sequence), led to differences: when heat-treatment was before high-pressure treatment, only the I IS fraction formed a self-standing gel; however, when the solutions were pressurised before heat treatment, all the proteins formed self-standing gels. The textural and water-holding properties were measured on the gels formed with the three different soy proteins. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
External reflection FTIR spectroscopy and surface pressure measurements were used to compare conformational changes in the adsorbed structures of three globular proteins at the air/water interface. Of the three proteins studied, lysozyme, bovine serum albumin and P-lactoglobulin, lysozyme was unique in its behaviour. Lysozyme adsorption was slow, taking approximately 2.5 h to reach a surface pressure plateau (from a 0.07 mM solution), and led to significant structural change. The FTIR spectra revealed that lysozyme formed a highly networked adsorbed layer of unfolded protein with high antiparallel beta-sheet content and that these changes occurred rapidly (within 10 min). This non-native secondary structure is analogous to that of a 3D heat-set protein gel, suggesting that the adsorbed protein formed a highly networked interfacial layer. Albumin and P-lactoglobulin adsorbed rapidly (reaching a plateau within 10 min) and with little chance to their native secondary structure.
Resumo:
A shock capturing scheme is presented for the equations of isentropic flow based on upwind differencing applied to a locally linearized set of Riemann problems. This includes the two-dimensional shallow water equations using the familiar gas dynamics analogy. An average of the flow variables across the interface between cells is required, and this average is chosen to be the arithmetic mean for computational efficiency, leading to arithmetic averaging. This is in contrast to usual ‘square root’ averages found in this type of Riemann solver where the computational expense can be prohibitive. The scheme is applied to a two-dimensional dam-break problem and the approximate solution compares well with those given by other authors.
Resumo:
Accurate knowledge of the location and magnitude of ocean heat content (OHC) variability and change is essential for understanding the processes that govern decadal variations in surface temperature, quantifying changes in the planetary energy budget, and developing constraints on the transient climate response to external forcings. We present an overview of the temporal and spatial characteristics of OHC variability and change as represented by an ensemble of dynamical and statistical ocean reanalyses (ORAs). Spatial maps of the 0–300 m layer show large regions of the Pacific and Indian Oceans where the interannual variability of the ensemble mean exceeds ensemble spread, indicating that OHC variations are well-constrained by the available observations over the period 1993–2009. At deeper levels, the ORAs are less well-constrained by observations with the largest differences across the ensemble mostly associated with areas of high eddy kinetic energy, such as the Southern Ocean and boundary current regions. Spatial patterns of OHC change for the period 1997–2009 show good agreement in the upper 300 m and are characterized by a strong dipole pattern in the Pacific Ocean. There is less agreement in the patterns of change at deeper levels, potentially linked to differences in the representation of ocean dynamics, such as water mass formation processes. However, the Atlantic and Southern Oceans are regions in which many ORAs show widespread warming below 700 m over the period 1997–2009. Annual time series of global and hemispheric OHC change for 0–700 m show the largest spread for the data sparse Southern Hemisphere and a number of ORAs seem to be subject to large initialization ‘shock’ over the first few years. In agreement with previous studies, a number of ORAs exhibit enhanced ocean heat uptake below 300 and 700 m during the mid-1990s or early 2000s. The ORA ensemble mean (±1 standard deviation) of rolling 5-year trends in full-depth OHC shows a relatively steady heat uptake of approximately 0.9 ± 0.8 W m−2 (expressed relative to Earth’s surface area) between 1995 and 2002, which reduces to about 0.2 ± 0.6 W m−2 between 2004 and 2006, in qualitative agreement with recent analysis of Earth’s energy imbalance. There is a marked reduction in the ensemble spread of OHC trends below 300 m as the Argo profiling float observations become available in the early 2000s. In general, we suggest that ORAs should be treated with caution when employed to understand past ocean warming trends—especially when considering the deeper ocean where there is little in the way of observational constraints. The current work emphasizes the need to better observe the deep ocean, both for providing observational constraints for future ocean state estimation efforts and also to develop improved models and data assimilation methods.
Resumo:
Unveiling the mechanisms of energy relaxation in biomolecules is key to our understanding of protein stability, allostery, intramolecular signaling, and long-lasting quantum coherence phenomena at ambient temperatures. Yet, the relationship between the pathways of energy transfer and the functional role of the residues involved remains largely unknown. Here, we develop a simulation method of mapping out residues that are highly efficient in relaxing an initially localized excess vibrational energy and perform site-directed mutagenesis functional assays to assess the relevance of these residues to protein function. We use the ligand binding domains of thyroid hormone receptor (TR) subtypes as a test case and find that conserved arginines, which are critical to TR transactivation function, are the most effective heat diffusers across the protein structure. These results suggest a hitherto unsuspected connection between a residue`s ability to mediate intramolecular vibrational energy redistribution and its functional relevance.
Resumo:
This study aimed to optimize the rheological properties of probiotic yoghurts supplemented with skimmed milk powder (SMP) whey protein concentrate (WPC) and sodium caseinate (Na-Cn) by using an experimental design type simplex-centroid for mixture modeling It Included seven batches/trials three were supplemented with each type of the dairy protein used three corresponding to the binary mixtures and one to the ternary one in order to increase protein concentration in 1 g 100 g(-1) of final product A control experiment was prepared without supplementing the milk base Processed milk bases were fermented at 42 C until pH 4 5 by using a starter culture blend that consisted of Streptococcus thermophilus Lactobacillus delbrueckii subsp bulgaricus and Bifidobacterium (Humans subsp lactis The kinetics of acidification was followed during the fermentation period as well the physico-chemical analyses enumeration of viable bacteria and theological characteristics of the yoghurts Models were adjusted to the results (kinetic responses counts of viable bacteria and theological parameters) through three regression models (linear quadratic and cubic special) applied to mixtures The results showed that the addition of milk proteins affected slightly acidification profile and counts of S thermophilus and B animal`s subsp lactis but it was significant for L delbrueckii subsp bulgaricus Partially-replacing SMP (45 g/100 g) with WPC or Na-Cn simultaneously enhanced the theological properties of probiotic yoghurts taking into account the kinetics of acidification and enumeration of viable bacteria (C) 2010 Elsevier Ltd All rights reserved
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper concerns the use of photoacoustic spectroscopy (PAS) to study the presence of aromatic amino acid in proteins. We examined the aromatic amino acids in six proteins with well-known structures using absorption spectra of near ultraviolet PAS over the wavelength range 240-320 nm. The fundamental understanding of the physical and chemical properties that govern the absorption of light and a subsequent release of heat to generate a transient pressure wave was used to test the concept of monitoring aromatic amino acids with this method. Second derivative spectroscopy in the ultraviolet region of proteins was also used to study the regions surrounding the aromatics and the percentage area in each band was related in order to determine the contribution in function of the respective molar extinction coefficients for each residue. Further investigation was conducted into the interaction between sodium dodecyl sulphate (SDS) and bothropstoxin-I (BthTx-I), with the purpose of identifying the aromatics that participate in the interaction. The clear changes in the second derivative and curve-fitting procedures suggest that initial SDS binding to the tryptophan located in the dimer interface and above 10 SDS an increased intensity between 260 and 320 nm, demonstrating that the more widespread tyrosine and phenylalanine residues contribute to the SDS/BthTx-I interactions. These results demonstrate the potential of near UV-PAS for the investigation of membrane proteins/detergent complexes in which light scattering is significant.
Resumo:
Moringa oleifera Lam, is a leguminous plant, originally from Asia, which is cultivated in Brazil because of its low production cost. Although some people have used this plant as food, there is little information about its chemical and nutritional characteristics. The objective of this study was to characterise the leaves of M. oleifera in terms of their chemical composition, protein fractions obtained by solubility in different systems and also to assess their nutritional quality and presence of bioactive substances. The whole leaf flour contained 28.7% crude protein, 7.1% fat, 10.9% ashes, 44.4% carbohydrate and 3.0 mg 100 g(-1) calcium and 103.1 mg 100 g(-1) iron. The protein profile revealed levels of 3.1% albumin, 0.3% globulins, 2.2% prolamin, 3.5% glutelin and 70.1% insoluble proteins. The hydrolysis of the protein from leaf flour employing sodium dodecyl sulfate (SDS) and 2-mercaptoethanol (ME) resulted in 39.5% and 29.5%, respectively. The total protein showed low in vitro digestibility (31.8%). The antinutritional substances tested were tannins (20.7 mg g(-1)), trypsin inhibitor (1.45 TIU mg g(-1)), nitrate (17 mg g(-1)) and oxalic acid (10.5 mg g(-1)), besides the absence of cyanogenic compounds. beta-Carotene and lutein stood out as major carotenoids, with concentrations of 161.0 and 47.0 mu g g(-1) leaf, respectively. Although M. oleifera leaves contain considerable amount of crude protein, this is mostly insoluble and has low in vitro digestibility, even after heat treatment and chemical attack. In vivo studies are needed to better assess the use of this leaf as a protein source in human feed. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The dengue virus non-structural 1 (NS1) protein contributes to evasion of host immune defenses and represents a target for immune responses. Evidences generated in experimental models, as well as the immune responses elicited by infected individuals, showed that induction of anti-NS1 immunity correlates with protective immunity but may also result in the generation of cross-reactive antibodies that recognize platelets and proteins involved in the coagulation cascade. In the present work, we evaluated the immune responses, protection to type 2 dengue virus (DENV2) challenges and safety parameters in BALB/c mice vaccinated with a recombinant NS1 protein in combination with three different adjuvants: aluminum hydroxide (alum), Freund's adjuvant (FA) or a genetically detoxified derivative of the heat-labile toxin (LTG33D), originally produced by some enterotoxigenic Escherichia coil (ETEC) strains. Mice were subcutaneously (s.c.) immunized with different vaccine formulations and the induced NS1-specific responses, including serum antibodies and T cell responses, were measured. Mice were also subjected to lethal challenges with the DENV2 NGC strain. The results showed that maximal protective immunity (50%) was achieved in mice vaccinated with NS1 in combination with LIG33D. Analyses of the NS1-specific immune responses showed that the anti-virus protection correlated mainly with the serum anti-NS1 antibody responses including higher avidity to the target antigen. Mice immunized with LTG33D elicited a prevailing IgG2a subclass response and generated antibodies with stronger affinity to the antigen than those generated in mice immunized with the other vaccine formulations. The vaccine formulations were also evaluated regarding induction of deleterious side effects and, in contrast to mice immunized with the FA-adjuvanted vaccine, no significant hepatic damage or enhanced C-reactive protein levels were detected in mice immunized with NS1 and LTG33D. Similarly, no detectable alterations in bleeding time and hematological parameters were detected in mice vaccinated with NS1 and LTG33D. Altogether, these results indicate that the combination of a purified recombinant NS1 and a nontoxic LT derivative is a promising alternative for the generation of safe and effective protein-based anti-dengue vaccine. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A previous study from our laboratory showed that maternal food restriction (MFR) delays thermoregulation in newborn rats. In neonates brown adipose tissue (BAT) is essential for thermogenesis due to the presence of uncoupling proteins (UCPs). The aim of this study was to evaluate the influence of MFR on the UCPs mRNA and protein expression in BAT and skeletal muscle (SM) of the newborn rat. Female Wistar EPM-1 control rats (CON) received chow ad libitum during pregnancy, whereas food-restricted dams (RES) received 50% of the amount ingested by CON. Fifteen hours after birth, the litters were weighed and sacrificed. Blood was collected for hormonal analysis. BAT and SM were used for determination of UCPs mRNA and protein expression, and Ca2+-ATPase sarcoplasmic reticulum (SERCA1). RES pups showed a significant reduction in body weight and fat content at birth. MFR caused a significant increase in the expression of UCP1 and UCP2 in BAT, without changes in UCP3 and SERCA1 expression in BAT and SM. No differences between groups were found for leptin, T4 and glucose levels. RES pups showed increased insulin and decreased T3 levels. The delay in development of thermoregulation previously described in RES animals appears not to result from impairment in thermogenesis, but from an increase in heat loss, since MFR caused low birth weight in pups, leading to greater surface/volume ratio. The higher expression of UCP1 and UCP2 in BAT suggests a compensatory mechanism to increased thermogenesis. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Many age-related neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and polyglutamine disorders, including Huntington’s disease, are associated with the aberrant formation of protein aggregates. These protein aggregates and/or their precursors are believed to be causally linked to the pathogenesis of such protein conformation disorders, also referred to as proteinopathies. The accumulation of protein aggregates, frequently under conditions of an age-related increase in oxidative stress, implies the failure of protein quality control and the resulting proteome instability as an upstream event of proteinopathies. As aging is a main risk factor of many proteinopathies, potential alterations of protein quality control pathways that accompany the biological aging process could be a crucial factor for the onset of these disorders.rnrnThe focus of this dissertation lies on age-related alterations of protein quality control mechanisms that are regulated by the co-chaperones of the BAG (Bcl-2-associated athanogene) family. BAG proteins are thought to promote nucleotide exchange on Hsc/Hsp70 and to couple the release of chaperone-bound substrates to distinct down-stream cellular processes. The present study demonstrates that BAG1 and BAG3 are reciprocally regulated during aging leading to an increased BAG3 to BAG1 ratio in cellular models of replicative senescence as well as in neurons of the aging rodent brain. Furthermore, BAG1 and BAG3 were identified as key regulators of protein degradation pathways. BAG1 was found to be essential for effective degradation of polyubiquitinated proteins by the ubiquitin/proteasome system, possibly by promoting Hsc/Hsp70 substrate transfer to the 26S proteasome. In contrast, BAG3 was identified to stimulate the turnover of polyubiquitinated proteins by macroautophagy, a catabolic process mediated by lysosomal hydrolases. BAG3-regulated protein degradation was found to depend on the function of the ubiquitin-receptor protein SQSTM1 which is known to sequester polyubiquitinated proteins for macroautophagic degradation. It could be further demonstrated that SQSTM1 expression is tightly coupled to BAG3 expression and that BAG3 can physically interact with SQSTM1. Moreover, immunofluorescence-based microscopic analyses revealed that BAG3 co-localizes with SQSTM1 in protein sequestration structures suggesting a direct role of BAG3 in substrate delivery to SQSTM1 for macroautophagic degradation. Consistent with these findings, the age-related switch from BAG1 to BAG3 was found to determine that aged cells use the macroautophagic system more intensely for the turnover of polyubiquitinated proteins, in particular of insoluble, aggregated quality control substrates. Finally, in vivo expression analysis of macroautophagy markers in young and old mice as well as analysis of the lysosomal enzymatic activity strongly indicated that the macroautophagy pathway is also recruited in the nervous system during the organismal aging process.rnrnTogether these findings suggest that protein turnover by macroautophagy is gaining importance during the aging process as insoluble quality control substrates are increasingly produced that cannot be degraded by the proteasomal system. For this reason, a switch from the proteasome regulator BAG1 to the macroautophagy stimulator BAG3 occurs during cell aging. Hence, it can be concluded that the BAG3-mediated recruitment of the macroauto-phagy pathway is an important adaptation of the protein quality control system to maintain protein homeostasis in the presence of an enhanced pro-oxidant and aggregation-prone milieu characteristic of aging. Future studies will explore whether an impairment of this adaptation process may contribute to age-related proteinopathies.
Resumo:
Im Genom des Cyanobakteriums Synechocystis sp. PCC6803 sind vier homologe Hsp70-Proteine kodiert. Im Rahmen dieser Arbeit konnten neue Erkenntnisse über die möglichen Funktionen der einzelnen Mitglieder der Hsp70-Proteinfamilie in dem Modellorganismus gewonnen bzw. bekannte Aufgabenbereiche erweitert werden. Wie für E. coli schon gezeigt, konnte auch für Synechocystis sp. nachgewiesen werden, dass eine Deletion des ribosomassoziierten Chaperons Trigger Factor ohne Beeinträchtigung der Zellviabilität möglich ist. Darüber hinaus war auch eine Doppeldeletion mit dnaK1 durchführbar. Als Auswirkung der Deletion ließ sich in den jeweiligen Deletionsstämmen eine veränderte Expression der homologen Hsp70-Proteine und Trigger Factor nachweisen. Mit Hilfe der Synechocystis sp.-Mutationsstämme ∆dnaK1, ∆dnaK2, ∆dnaK3, ∆tig und ∆dnaK1∆tig wurden Auswirkungen der Deletion bzw. Depletion umfassend dargestellt und daraus hervorgehende putative Funktionen eingehend diskutiert. Die Reduzierung der zellulären DnaK3-Konzentration um etwa 70 % führte im Depletionsstamm ΔdnaK3 zu weitreichenden physiologischen Änderungen hinsichtlich photosynthetischer Prozesse. Zusammen mit einer lichtabhängigen Expression, konnte DnaK3 als essentieller Faktor für die funktionelle Aufrechterhaltung der Thylakoidmembran identifiziert werden. Durch die Analyse des Proteoms und Lipidoms dunkeladaptierter Synechocystis sp.-Zellen konnte im Vergleich zu älteren Studien eine erheblich größere Anzahl von Proteinen detektiert und quantifiziert werden, womit neue Erkenntnisse über die physiologischen Veränderungen unter heterotrophem Wachstum sowie der Thylakoidmembranbiogenese gewonnen werden konnten.