932 resultados para HMM, Nosocomial Pathogens, Genotyping, Statistical Modelling, VRE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococci are important pathogenic bacteria responsible for a range of diseases in humans. The most frequently isolated microorganisms in a hospital microbiology laboratory are staphylococci. The general classification of staphylococci divides them into two major groups; Coagulase-positive staphylococci (e.g. Staphylococcus aureus) and Coagulase-negative staphylococci (e.g. Staphylococcus epidermidis). Coagulase-negative staphylococcal (CoNS) isolates include a variety of species and many different strains but are often dominated by the most important organism of this group, S. epidermidis. Currently, these organisms are regarded as important pathogenic organisms causing infections related to prosthetic materials and surgical wounds. A significant number of S. epidermidis isolates are also resistant to different antimicrobial agents. Virulence factors in CoNS are not very clearly established and not well documented. S. epidermidis is evolving as a resistant and powerful microbe related to nosocomial infections because it has different properties which independently, and in combination, make it a successful infectious agent, especially in the hospital environment. Such characteristics include biofilm formation, drug resistance and the evolution of genetic variables. The purpose of this project was to develop a novel SNP genotyping method to genotype S. epidermidis strains originating from hospital patients and healthy individuals. High-Resolution Melt Analysis was used to assign binary typing profiles to both clinical and commensal strains using a new bioinformatics approach. The presence of antibiotic resistance genes and biofilm coding genes were also interrogated in these isolates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modelling the power systems load is a challenge since the load level and composition varies with time. An accurate load model is important because there is a substantial component of load dynamics in the frequency range relevant to system stability. The composition of loads need to be charaterised because the time constants of composite loads affect the damping contributions of the loads to power system oscillations, and their effects vary with the time of the day, depending on the mix of motors loads. This chapter has two main objectives: 1) describe the load modelling in small signal using on-line measurements; and 2) present a new approach to develop models that reflect the load response to large disturbances. Small signal load characterisation based on on-line measurements allows predicting the composition of load with improved accuracy compared with post-mortem or classical load models. Rather than a generic dynamic model for small signal modelling of the load, an explicit induction motor is used so the performance for larger disturbances can be more reliably inferred. The relation between power and frequency/voltage can be explicitly formulated and the contribution of induction motors extracted. One of the main features of this work is the induction motor component can be associated to nominal powers or equivalent motors

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Handling information overload online, from the user's point of view is a big challenge, especially when the number of websites is growing rapidly due to growth in e-commerce and other related activities. Personalization based on user needs is the key to solving the problem of information overload. Personalization methods help in identifying relevant information, which may be liked by a user. User profile and object profile are the important elements of a personalization system. When creating user and object profiles, most of the existing methods adopt two-dimensional similarity methods based on vector or matrix models in order to find inter-user and inter-object similarity. Moreover, for recommending similar objects to users, personalization systems use the users-users, items-items and users-items similarity measures. In most cases similarity measures such as Euclidian, Manhattan, cosine and many others based on vector or matrix methods are used to find the similarities. Web logs are high-dimensional datasets, consisting of multiple users, multiple searches with many attributes to each. Two-dimensional data analysis methods may often overlook latent relationships that may exist between users and items. In contrast to other studies, this thesis utilises tensors, the high-dimensional data models, to build user and object profiles and to find the inter-relationships between users-users and users-items. To create an improved personalized Web system, this thesis proposes to build three types of profiles: individual user, group users and object profiles utilising decomposition factors of tensor data models. A hybrid recommendation approach utilising group profiles (forming the basis of a collaborative filtering method) and object profiles (forming the basis of a content-based method) in conjunction with individual user profiles (forming the basis of a model based approach) is proposed for making effective recommendations. A tensor-based clustering method is proposed that utilises the outcomes of popular tensor decomposition techniques such as PARAFAC, Tucker and HOSVD to group similar instances. An individual user profile, showing the user's highest interest, is represented by the top dimension values, extracted from the component matrix obtained after tensor decomposition. A group profile, showing similar users and their highest interest, is built by clustering similar users based on tensor decomposed values. A group profile is represented by the top association rules (containing various unique object combinations) that are derived from the searches made by the users of the cluster. An object profile is created to represent similar objects clustered on the basis of their similarity of features. Depending on the category of a user (known, anonymous or frequent visitor to the website), any of the profiles or their combinations is used for making personalized recommendations. A ranking algorithm is also proposed that utilizes the personalized information to order and rank the recommendations. The proposed methodology is evaluated on data collected from a real life car website. Empirical analysis confirms the effectiveness of recommendations made by the proposed approach over other collaborative filtering and content-based recommendation approaches based on two-dimensional data analysis methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mixture models are a flexible tool for unsupervised clustering that have found popularity in a vast array of research areas. In studies of medicine, the use of mixtures holds the potential to greatly enhance our understanding of patient responses through the identification of clinically meaningful clusters that, given the complexity of many data sources, may otherwise by intangible. Furthermore, when developed in the Bayesian framework, mixture models provide a natural means for capturing and propagating uncertainty in different aspects of a clustering solution, arguably resulting in richer analyses of the population under study. This thesis aims to investigate the use of Bayesian mixture models in analysing varied and detailed sources of patient information collected in the study of complex disease. The first aim of this thesis is to showcase the flexibility of mixture models in modelling markedly different types of data. In particular, we examine three common variants on the mixture model, namely, finite mixtures, Dirichlet Process mixtures and hidden Markov models. Beyond the development and application of these models to different sources of data, this thesis also focuses on modelling different aspects relating to uncertainty in clustering. Examples of clustering uncertainty considered are uncertainty in a patient’s true cluster membership and accounting for uncertainty in the true number of clusters present. Finally, this thesis aims to address and propose solutions to the task of comparing clustering solutions, whether this be comparing patients or observations assigned to different subgroups or comparing clustering solutions over multiple datasets. To address these aims, we consider a case study in Parkinson’s disease (PD), a complex and commonly diagnosed neurodegenerative disorder. In particular, two commonly collected sources of patient information are considered. The first source of data are on symptoms associated with PD, recorded using the Unified Parkinson’s Disease Rating Scale (UPDRS) and constitutes the first half of this thesis. The second half of this thesis is dedicated to the analysis of microelectrode recordings collected during Deep Brain Stimulation (DBS), a popular palliative treatment for advanced PD. Analysis of this second source of data centers on the problems of unsupervised detection and sorting of action potentials or "spikes" in recordings of multiple cell activity, providing valuable information on real time neural activity in the brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Known risk factors for secondary lymphedema only partially explain who develops lymphedema following cancer, suggesting that inherited genetic susceptibility may influence risk. Moreover, identification of molecular signatures could facilitate lymphedema risk prediction prior to surgery or lead to effective drug therapies for prevention or treatment. Recent advances in the molecular biology underlying development of the lymphatic system and related congenital disorders implicate a number of potential candidate genes to explore in relation to secondary lymphedema. Methods and Results: We undertook a nested case-control study, with participants who had developed lymphedema after surgical intervention within the first 18 months of their breast cancer diagnosis serving as cases (n=22) and those without lymphedema serving as controls (n=98), identified from a prospective, population-based, cohort study in Queensland, Australia. TagSNPs that covered all known genetic variation in the genes SOX18, VEGFC, VEGFD, VEGFR2, VEGFR3, RORC, FOXC2, LYVE1, ADM and PROX1 were selected for genotyping. Multiple SNPs within three receptor genes, VEGFR2, VEGFR3 and RORC, were associated with lymphedema defined by statistical significance (p<0.05) or extreme risk estimates (OR<0.5 or >2.0). Conclusions: These provocative, albeit preliminary, findings regarding possible genetic predisposition to secondary lymphedema following breast cancer treatment warrant further attention for potential replication using larger datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional wagon train models have been developed for the crashworthiness analysis using multi-body dynamics approach. The contributions of the train size (number of wagon) to the frontal crash forces can be identified through the simulations. The effects of crash energy management (CEM) design and crash speed on train crashworthiness are examined. The CEM design can significantly improve the train crashworthiness and the consequential vehicle stability performance - reducing derailment risks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, spatially offset Raman spectroscopy (SORS) is demonstrated for non-invasively investigating the composition of drug mixtures inside an opaque plastic container. The mixtures consisted of three components including a target drug (acetaminophen or phenylephrine hydrochloride) and two diluents (glucose and caffeine). The target drug concentrations ranged from 5% to 100%. After conducting SORS analysis to ascertain the Raman spectra of the concealed mixtures, principal component analysis (PCA) was performed on the SORS spectra to reveal trends within the data. Partial least squares (PLS) regression was used to construct models that predicted the concentration of each target drug, in the presence of the other two diluents. The PLS models were able to predict the concentration of acetaminophen in the validation samples with a root-mean-square error of prediction (RMSEP) of 3.8% and the concentration of phenylephrine hydrochloride with an RMSEP of 4.6%. This work demonstrates the potential of SORS, used in conjunction with multivariate statistical techniques, to perform non-invasive, quantitative analysis on mixtures inside opaque containers. This has applications for pharmaceutical analysis, such as monitoring the degradation of pharmaceutical products on the shelf, in forensic investigations of counterfeit drugs, and for the analysis of illicit drug mixtures which may contain multiple components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of solid tumours beyond a critical size is dependent upon angiogenesis, the formation of new blood vessels from an existing vasculature. Tumours may remain dormant at microscopic sizes for some years before switching to a mode in which growth of a supportive vasculature is initiated. The new blood vessels supply nutrients, oxygen, and access to routes by which tumour cells may travel to other sites within the host (metastasize). In recent decades an abundance of biological research has focused on tumour-induced angiogenesis in the hope that treatments targeted at the vasculature may result in a stabilisation or regression of the disease: a tantalizing prospect. The complex and fascinating process of angiogenesis has also attracted the interest of researchers in the field of mathematical biology, a discipline that is, for mathematics, relatively new. The challenge in mathematical biology is to produce a model that captures the essential elements and critical dependencies of a biological system. Such a model may ultimately be used as a predictive tool. In this thesis we examine a number of aspects of tumour-induced angiogenesis, focusing on growth of the neovasculature external to the tumour. Firstly we present a one-dimensional continuum model of tumour-induced angiogenesis in which elements of the immune system or other tumour-cytotoxins are delivered via the newly formed vessels. This model, based on observations from experiments by Judah Folkman et al., is able to show regression of the tumour for some parameter regimes. The modelling highlights a number of interesting aspects of the process that may be characterised further in the laboratory. The next model we present examines the initiation positions of blood vessel sprouts on an existing vessel, in a two-dimensional domain. This model hypothesises that a simple feedback inhibition mechanism may be used to describe the spacing of these sprouts with the inhibitor being produced by breakdown of the existing vessel's basement membrane. Finally, we have developed a stochastic model of blood vessel growth and anastomosis in three dimensions. The model has been implemented in C++, includes an openGL interface, and uses a novel algorithm for calculating proximity of the line segments representing a growing vessel. This choice of programming language and graphics interface allows for near-simultaneous calculation and visualisation of blood vessel networks using a contemporary personal computer. In addition the visualised results may be transformed interactively, and drop-down menus facilitate changes in the parameter values. Visualisation of results is of vital importance in the communication of mathematical information to a wide audience, and we aim to incorporate this philosophy in the thesis. As biological research further uncovers the intriguing processes involved in tumourinduced angiogenesis, we conclude with a comment from mathematical biologist Jim Murray, Mathematical biology is : : : the most exciting modern application of mathematics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel beam produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. It has the beneficial characteristics of torsionally rigid closed rectangular flanges combined with economical fabrication processes from a single strip of high strength steel. Although the LSB sections are commonly used as flexural members, no research has been undertaken on the shear behaviour of LSBs. Therefore experimental and numerical studies were undertaken to investigate the shear behaviour and strength of LSBs. In this research finite element models of LSBs were developed to investigate their nonlinear shear behaviour including their buckling characteristics and ultimate shear strength. They were validated by comparing their results with available experimental results. The models provided full details of the shear buckling and strength characteristics of LSBs, and showed the presence of considerable improvements to web shear buckling in LSBs and associated post-buckling strength. This paper presents the details of the finite element models of LSBs and the results. Both finite element analysis and experimental results showed that the current design rules in cold-formed steel codes are very conservative for the shear design of LSBs. The ultimate shear capacities from finite element analyses confirmed the accuracy of proposed shear strength equations for LSBs based on the North American specification and DSM design equations. Developed finite element models were used to investigate the reduction to shear capacity of LSBs when full height web side plates were not used or when only one web side plate was used, and these results are also presented in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently an innovative composite panel system was developed, where a thin insulation layer was used externally between two plasterboards to improve the fire performance of light gauge cold-formed steel frame walls. In this research, finite-element thermal models of both the traditional light gauge cold-formed steel frame wall panels with cavity insulation and the new light gauge cold-formed steel frame composite wall panels were developed to simulate their thermal behaviour under standard and realistic fire conditions. Suitable apparent thermal properties of gypsum plasterboard, insulation materials and steel were proposed and used. The developed models were then validated by comparing their results with available fire test results. This article presents the details of the developed finite-element models of small-scale non-load-bearing light gauge cold-formed steel frame wall panels and the results of the thermal analysis. It has been shown that accurate finite-element models can be used to simulate the thermal behaviour of small-scale light gauge cold-formed steel frame walls with varying configurations of insulations and plasterboards. The numerical results show that the use of cavity insulation was detrimental to the fire rating of light gauge cold-formed steel frame walls, while the use of external insulation offered superior thermal protection to them. The effects of real fire conditions are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complex interaction of the bones of the foot has been explored in detail in recent years, which has led to the acknowledgement in the biomechanics community that the foot can no longer be considered as a single rigid segment. With the advance of motion analysis technology it has become possible to quantify the biomechanics of simplified units or segments that make up the foot. Advances in technology coupled with reducing hardware prices has resulted in the uptake of more advanced tools available for clinical gait analysis. The increased use of these techniques in clinical practice requires defined standards for modelling and reporting of foot and ankle kinematics. This systematic review aims to provide a critical appraisal of commonly used foot and ankle marker sets designed to assess kinematics and thus provide a theoretical background for the development of modelling standards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using complex event rules for capturing dependencies between business processes is an emerging trend in enterprise information systems. In previous work we have identified a set of requirements for event extensions for business process modeling languages. This paper introduces a graphical language for modeling composite events in business processes, namely BEMN, that fulfills all these requirements. These include event conjunction, disjunction and inhibition as well as cardinality of events whose graphical expression can be factored into flow-oriented process modeling and event rule modeling. Formal semantics for the language are provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital human modeling (DHM), as a convenient and cost-effective tool, is increasingly incorporated into product and workplace design. In product design, it is predominantly used for the development of driver-vehicle systems. Most digital human modeling software tools, such as JACK, RAMSIS and DELMIA HUMANBUILDER provide functions to predict posture and positions for drivers with selected anthropometry according to SAE (Society of Automotive Engineers) Recommended Practices and other ergonomics guidelines. However, few studies have presented 2nd row passenger postural information, and digital human modeling of these passenger postures cannot be performed directly using the existing driver posture prediction functions. In this paper, the significant studies related to occupant posture and modeling were reviewed and a framework of determinants of driver vs. 2nd row occupant posture modeling was extracted. The determinants which are regarded as input factors for posture modeling include target population anthropometry, vehicle package geometry and seat design variables as well as task definitions. The differences between determinants of driver and 2nd row occupant posture models are significant, as driver posture modeling is primarily based on the position of the foot on the accelerator pedal (accelerator actuation point AAP, accelerator heel point AHP) and the hands on the steering wheel (steering wheel centre point A-Point). The objectives of this paper are aimed to investigate those differences between driver and passenger posture, and to supplement the existing parametric model for occupant posture prediction. With the guide of the framework, the associated input parameters of occupant digital human models of both driver and second row occupant will be identified. Beyond the existing occupant posture models, for example a driver posture model could be modified to predict second row occupant posture, by adjusting the associated input parameters introduced in this paper. This study combines results from a literature review and the theoretical modeling stage of a second row passenger posture prediction model project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work a biomechanical model is used for simulation of muscle forces necessary to maintain the posture in a car seat under different support conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complex interaction of the bones of the foot has been explored in detail in recent years, which has led to the acknowledgement in the biomechanics community that the foot can no longer be considered as a single rigid segment. With the advance of motion analysis technology it has become possible to quantify the biomechanics of simplified units or segments that make up the foot. Advances in technology coupled with reducing hardware prices has resulted in the uptake of more advanced tools available for clinical gait analysis. The increased use of these techniques in clinical practice requires defined standards for modelling and reporting of foot and ankle kinematics. This systematic review aims to provide a critical appraisal of commonly used foot and ankle marker sets designed to assess kinematics and thus provide a theoretical background for the development of modelling standards.