847 resultados para Grid computing and services
Resumo:
The present essay’s central argument or hypothesis is, consequently, that the mechanisms accelerating a wealth concentrating and exclusionary economy centred on the benefit and overprotection of big business—with a corresponding plundering of resources that are vital for life—generated forms of loss and regression in the right to healthcare and the dismantling of institutional protections. These are all expressed in indicators from 1990-2005, which point not only to the deterioration of healthcare programs and services but also to the undermining of the general conditions of life (social reproduction) and, in contrast to the reports and predictions of the era’s governments, a stagnation or deterioration in health indicators, especially for those most sensitive to the crisis. The present study’s argument is linked together across distinct chapters. First, we undertake the necessary clarification of the categories central to the understanding of a complex issue; clarifying the concept of health itself and its determinants, emphasizing the necessity of taking on an integral understanding as a fundamental prerequisite to unravelling what documents and reports from this era either leave unsaid or distort. Based on that analysis, we will explain the harmful effects of global economic acceleration, the monopolization and pillaging of strategic healthcare goods; not only those which directly place obstacles on the access to health services, but also those like the destructuration of small economies, linked to the impoverishment and worsening of living modes. Thinking epidemiologically, we intend to show signs of the deterioration of broad collectivities’ ways of life as a result of the mechanisms of acceleration and pillage. We will then collect disparate evidence of the deterioration of human health and ecosystems to, finally, establish the most urgent conclusions about this unfortunate period of our social and medical history.
Resumo:
In real world applications sequential algorithms of data mining and data exploration are often unsuitable for datasets with enormous size, high-dimensionality and complex data structure. Grid computing promises unprecedented opportunities for unlimited computing and storage resources. In this context there is the necessity to develop high performance distributed data mining algorithms. However, the computational complexity of the problem and the large amount of data to be explored often make the design of large scale applications particularly challenging. In this paper we present the first distributed formulation of a frequent subgraph mining algorithm for discriminative fragments of molecular compounds. Two distributed approaches have been developed and compared on the well known National Cancer Institute’s HIV-screening dataset. We present experimental results on a small-scale computing environment.
Resumo:
Competitive Dialogue (CD) is a new contract award procedure of the European Community (EC). It is set out in Article 29 of the 'Public Sector Directive' 2004/18/EC. Over the last decades, projects were becoming more and more complex, and the existing EC procedures were no longer suitable to procure those projects. The call for a new procedure resulted in CD. This paper describes how the Directive has been implemented into the laws of two member states: the UK and the Netherlands. In order to implement the Directive, both lawmakers have set up a new and distinct piece of legislation. In each case, large parts of the Directive’s content have been repeated ‘word for word’; only minor parts have been reworded and/or restructured. In the next part of the paper, the CD procedure is examined in different respects. First, an overview is given on the different EC contract award procedures (open, restricted, negotiated, CD) and awarding methods (lowest price and Most Economically Advantageous Tender, MEAT). Second, the applicability of CD is described: Among other limitations, CD can only be applied to public contracts for works, supplies, and services, and this scope of application is further restricted by the exclusion of certain contract types. One such exclusion concerns services concessions. This means that PPP contracts which are set up as services concessions cannot be awarded by CD. The last two parts of the paper pertain to the main features of the CD procedure – from ‘contract notice’ to ‘contract award’ – and the advantages and disadvantages of the procedure. One advantage is that the dialogue allows the complexity of the project to be disentangled and clarified. Other advantages are the stimulation of innovation and creativity. These advantages are set against the procedure’s disadvantages, which include high transaction costs and a perceived hindrance of innovation (due to an ambiguity between transparency and fair competition). It is concluded that all advantages and disadvantages are related to one of three elements: communication, competition, and/or structure of the procedure. Further research is needed to find out how these elements are related.
Resumo:
A series of government initiatives has raised both the profile of ICT in the curriculum and the expectation that high quality teaching and learning resources will be accessible across electronic networks. In order for e-learning resources such as websites to have the maximum educational impact, teachers need to be involved in their design and development. Use-case analysis provides a means of defining user requirements and other constraints in such a way that software developers can produce e-learning resources which reflect teachers' professional knowledge and support their classroom practice. It has some features in common with the participatory action research used to develop other aspects of classroom practice. Two case-studies are presented: one involves the development of an on-line resource centred on transcripts of original historical documents; the other describes how 'Learning how to Learn', a major, distributed research project funded under the ESRC Teaching and Learning Research Programme is using use-case analysis to develop web resources and services.
Research agenda in context-specific semantic resolution of security and QoS for ambient intelligence
Resumo:
The performance benefit when using Grid systems comes from different strategies, among which partitioning the applications into parallel tasks is the most important. However, in most cases the enhancement coming from partitioning is smoothed by the effect of the synchronization overhead, mainly due to the high variability of completion times of the different tasks, which, in turn, is due to the large heterogeneity of Grid nodes. For this reason, it is important to have models which capture the performance of such systems. In this paper we describe a queueing-network-based performance model able to accurately analyze Grid architectures, and we use the model to study a real parallel application executed in a Grid. The proposed model improves the classical modelling techniques and highlights the impact of resource heterogeneity and network latency on the application performance.
Resumo:
This paper is addressed to the numerical solving of the rendering equation in realistic image creation. The rendering equation is integral equation describing the light propagation in a scene accordingly to a given illumination model. The used illumination model determines the kernel of the equation under consideration. Nowadays, widely used are the Monte Carlo methods for solving the rendering equation in order to create photorealistic images. In this work we consider the Monte Carlo solving of the rendering equation in the context of the parallel sampling scheme for hemisphere. Our aim is to apply this sampling scheme to stratified Monte Carlo integration method for parallel solving of the rendering equation. The domain for integration of the rendering equation is a hemisphere. We divide the hemispherical domain into a number of equal sub-domains of orthogonal spherical triangles. This domain partitioning allows to solve the rendering equation in parallel. It is known that the Neumann series represent the solution of the integral equation as a infinity sum of integrals. We approximate this sum with a desired truncation error (systematic error) receiving the fixed number of iteration. Then the rendering equation is solved iteratively using Monte Carlo approach. At each iteration we solve multi-dimensional integrals using uniform hemisphere partitioning scheme. An estimate of the rate of convergence is obtained using the stratified Monte Carlo method. This domain partitioning allows easy parallel realization and leads to convergence improvement of the Monte Carlo method. The high performance and Grid computing of the corresponding Monte Carlo scheme are discussed.
Resumo:
The work reported in this paper proposes a novel synergy between parallel computing and swarm robotics to offer a new computing paradigm, 'swarm-array computing' that can harness and apply autonomic computing for parallel computing systems. One approach among three proposed approaches in swarm-array computing based on landscapes of intelligent cores, in which the cores of a parallel computing system are abstracted to swarm agents, is investigated. A task is executed and transferred seamlessly between cores in the proposed approach thereby achieving self-ware properties that characterize autonomic computing. FPGAs are considered as an experimental platform taking into account its application in space robotics. The feasibility of the proposed approach is validated on the SeSAm multi-agent simulator.
Resumo:
Can autonomic computing concepts be applied to traditional multi-core systems found in high performance computing environments? In this paper, we propose a novel synergy between parallel computing and swarm robotics to offer a new computing paradigm, `Swarm-Array Computing' that can harness and apply autonomic computing for parallel computing systems. One approach among three proposed approaches in swarm-array computing based on landscapes of intelligent cores, in which the cores of a parallel computing system are abstracted to swarm agents, is investigated. A task gets executed and transferred seamlessly between cores in the proposed approach thereby achieving self-ware properties that characterize autonomic computing. FPGAs are considered as an experimental platform taking into account its application in space robotics. The feasibility of the proposed approach is validated on the SeSAm multi-agent simulator.
Resumo:
The performance benefit when using grid systems comes from different strategies, among which partitioning the applications into parallel tasks is the most important. However, in most cases the enhancement coming from partitioning is smoothed by the effects of synchronization overheads, mainly due to the high variability in the execution times of the different tasks, which, in turn, is accentuated by the large heterogeneity of grid nodes. In this paper we design hierarchical, queuing network performance models able to accurately analyze grid architectures and applications. Thanks to the model results, we introduce a new allocation policy based on a combination between task partitioning and task replication. The models are used to study two real applications and to evaluate the performance benefits obtained with allocation policies based on task replication.
Resumo:
One of the enablers for new consumer electronics based products to be accepted in to the market is the availability of inexpensive, flexible and multi-standard chipsets and services. DVB-T, the principal standard for terrestrial broadcast of digital video in Europe, has been extremely successful in leading to governments reconsidering their targets for analogue television broadcast switch-off. To enable one further small step in creating increasingly cost effective chipsets, the ODFM deterministic equalizer has been presented before with its application to DVB-T. This paper discusses the test set-up of a DVB-T compliant baseband simulation that includes the deterministic equalizer and DVB-T standard propagation channels. This is then followed by a presentation of the found inner and outer Bit Error Rate (BER) results using various modulation levels, coding rates and propagation channels in order to ascertain the actual performance of the deterministic equalizer(1).
Resumo:
Purpose: The purpose of this paper is to address a classic problem – pattern formation identified by researchers in the area of swarm robotic systems – and is also motivated by the need for mathematical foundations in swarm systems. Design/methodology/approach: The work is separated out as inspirations, applications, definitions, challenges and classifications of pattern formation in swarm systems based on recent literature. Further, the work proposes a mathematical model for swarm pattern formation and transformation. Findings: A swarm pattern formation model based on mathematical foundations and macroscopic primitives is proposed. A formal definition for swarm pattern transformation and four special cases of transformation are introduced. Two general methods for transforming patterns are investigated and a comparison of the two methods is presented. The validity of the proposed models, and the feasibility of the methods investigated are confirmed on the Traer Physics and Processing environment. Originality/value: This paper helps in understanding the limitations of existing research in pattern formation and the lack of mathematical foundations for swarm systems. The mathematical model and transformation methods introduce two key concepts, namely macroscopic primitives and a mathematical model. The exercise of implementing the proposed models on physics simulator is novel.
Resumo:
The precision of quasioptical null-balanced bridge instruments for transmission and reflection coefficient measurements at millimeter and submillimeter wavelengths is analyzed. A Jones matrix analysis is used to describe the amount of power reaching the detector as a function of grid angle orientation, sample transmittance/reflectance and phase delay. An analysis is performed of the errors involved in determining the complex transmission and reflection coefficient after taking into account the quantization error in the grid angle and micrometer readings, the transmission or reflection coefficient of the sample, the noise equivalent power of the detector, the source power and the post-detection bandwidth. For a system fitted with a rotating grid with resolution of 0.017 rad and a micrometer quantization error of 1 μm, a 1 mW source, and a detector with a noise equivalent power 5×10−9 W Hz−1/2, the maximum errors at an amplitude transmission or reflection coefficient of 0.5 are below ±0.025.