743 resultados para Grid Computing
Resumo:
Die voranschreitende Entwicklung von Konzepten und Systemen zur Nutzung digitaler Informationen im industriellen Umfeld eröffnet verschiedenste Möglichkeiten zur Optimierung der Informationsverarbeitung und damit der Prozesseffektivität und -effizienz. Werden die relevanten Daten zu Produkten oder Prozessen jedoch lediglich in digitaler Form zur Verfügung gestellt, fällt ein Eingriff des Menschen in die virtuelle Welt immer schwerer. Auf Grundlage dessen wird am Beispiel der RFIDTechnologie dargestellt, inwiefern digitale Informationen durch die Verwendung von in den Arbeitsablauf integrierten Systemen für den Menschen nutzbar werden. Durch die Entwicklung eines Systems zur papierlosen Produktion und Logistik werden exemplarisch Einsatzszenarien zur Unterstützung des Mitarbeiters in Montageprozessen sowie zur Vermeidung von Fehlern in der Kommissionierung aufgezeigt. Dazu findet neben einer am Kopf getragenen Datenbrille zur Visualisierung der Informationen ein mobiles RFID-Lesegerät Anwendung, mit Hilfe dessen die digitalen Transponderdaten ohne zusätzlichen Aufwand für den Anwender genutzt werden können.
Resumo:
Cloud computing is a new development that is based on the premise that data and applications are stored centrally and can be accessed through the Internet. Thisarticle sets up a broad analysis of how the emergence of clouds relates to European competition law, network regulation and electronic commerce regulation, which we relate to challenges for the further development of cloud services in Europe: interoperability and data portability between clouds; issues relating to vertical integration between clouds and Internet Service Providers; and potential problems for clouds to operate on the European Internal Market. We find that these issues are not adequately addressed across the legal frameworks that we analyse, and argue for further research into how to better facilitate innovative convergent services such as cloud computing through European policy – especially in light of the ambitious digital agenda that the European Commission has set out.
Resumo:
The development of the Internet has made it possible to transfer data ‘around the globe at the click of a mouse’. Especially fresh business models such as cloud computing, the newest driver to illustrate the speed and breadth of the online environment, allow this data to be processed across national borders on a routine basis. A number of factors cause the Internet to blur the lines between public and private space: Firstly, globalization and the outsourcing of economic actors entrain an ever-growing exchange of personal data. Secondly, the security pressure in the name of the legitimate fight against terrorism opens the access to a significant amount of data for an increasing number of public authorities.And finally,the tools of the digital society accompany everyone at each stage of life by leaving permanent individual and borderless traces in both space and time. Therefore, calls from both the public and private sectors for an international legal framework for privacy and data protection have become louder. Companies such as Google and Facebook have also come under continuous pressure from governments and citizens to reform the use of data. Thus, Google was not alone in calling for the creation of ‘global privacystandards’. Efforts are underway to review established privacy foundation documents. There are similar efforts to look at standards in global approaches to privacy and data protection. The last remarkable steps were the Montreux Declaration, in which the privacycommissioners appealed to the United Nations ‘to prepare a binding legal instrument which clearly sets out in detail the rights to data protection and privacy as enforceable human rights’. This appeal was repeated in 2008 at the 30thinternational conference held in Strasbourg, at the 31stconference 2009 in Madrid and in 2010 at the 32ndconference in Jerusalem. In a globalized world, free data flow has become an everyday need. Thus, the aim of global harmonization should be that it doesn’t make any difference for data users or data subjects whether data processing takes place in one or in several countries. Concern has been expressed that data users might seek to avoid privacy controls by moving their operations to countries which have lower standards in their privacy laws or no such laws at all. To control that risk, some countries have implemented special controls into their domestic law. Again, such controls may interfere with the need for free international data flow. A formula has to be found to make sure that privacy at the international level does not prejudice this principle.
Resumo:
Applying location-focused data protection law within the context of a location-agnostic cloud computing framework is fraught with difficulties. While the Proposed EU Data Protection Regulation has introduced a lot of changes to the current data protection framework, the complexities of data processing in the cloud involve various layers and intermediaries of actors that have not been properly addressed. This leaves some gaps in the regulation when analyzed in cloud scenarios. This paper gives a brief overview of the relevant provisions of the regulation that will have an impact on cloud transactions and addresses the missing links. It is hoped that these loopholes will be reconsidered before the final version of the law is passed in order to avoid unintended consequences.
Resumo:
This book provides the latest in a series of books growing out of the International Joint Conferences on Computer, Information and Systems Sciences and Engineering. It includes chapters in the most advanced areas of Computing, Informatics, Systems Sciences and Engineering. It has accessible to a wide range of readership, including professors, researchers, practitioners and students. This book includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Informatics, and Systems Sciences, and Engineering. It includes selected papers form the conference proceedings of the Ninth International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2013). Coverage includes topics in: Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.
Resumo:
Recent advancements in cloud computing have enabled the proliferation of distributed applications, which require management and control of multiple services. However, without an efficient mechanism for scaling services in response to changing environmental conditions and number of users, application performance might suffer, leading to Service Level Agreement (SLA) violations and inefficient use of hardware resources. We introduce a system for controlling the complexity of scaling applications composed of multiple services using mechanisms based on fulfillment of SLAs. We present how service monitoring information can be used in conjunction with service level objectives, predictions, and correlations between performance indicators for optimizing the allocation of services belonging to distributed applications. We validate our models using experiments and simulations involving a distributed enterprise information system. We show how discovering correlations between application performance indicators can be used as a basis for creating refined service level objectives, which can then be used for scaling the application and improving the overall application's performance under similar conditions.
Resumo:
Producers in the Chariton Valley Beef organization have marketed more than 10,000 head of cattle into grid markets over the past three years. Data from 134 lots were summarized, with 3,791 head of cattle marketed into four grid markets. Producers averaged $26.05 per head premiums. Premiums and discounts ranged from a positive $79.01 to a negative $40.44 on tots delivered.
Resumo:
The discovery of grid cells in the medial entorhinal cortex (MEC) permits the characterization of hippocampal computation in much greater detail than previously possible. The present study addresses how an integrate-and-fire unit driven by grid-cell spike trains may transform the multipeaked, spatial firing pattern of grid cells into the single-peaked activity that is typical of hippocampal place cells. Previous studies have shown that in the absence of network interactions, this transformation can succeed only if the place cell receives inputs from grids with overlapping vertices at the location of the place cell's firing field. In our simulations, the selection of these inputs was accomplished by fast Hebbian plasticity alone. The resulting nonlinear process was acutely sensitive to small input variations. Simulations differing only in the exact spike timing of grid cells produced different field locations for the same place cells. Place fields became concentrated in areas that correlated with the initial trajectory of the animal; the introduction of feedback inhibitory cells reduced this bias. These results suggest distinct roles for plasticity of the perforant path synapses and for competition via feedback inhibition in the formation of place fields in a novel environment. Furthermore, they imply that variability in MEC spiking patterns or in the rat's trajectory is sufficient for generating a distinct population code in a novel environment and suggest that recalling this code in a familiar environment involves additional inputs and/or a different mode of operation of the network.
Resumo:
Two new approaches to quantitatively analyze diffuse diffraction intensities from faulted layer stacking are reported. The parameters of a probability-based growth model are determined with two iterative global optimization methods: a genetic algorithm (GA) and particle swarm optimization (PSO). The results are compared with those from a third global optimization method, a differential evolution (DE) algorithm [Storn & Price (1997). J. Global Optim. 11, 341–359]. The algorithm efficiencies in the early and late stages of iteration are compared. The accuracy of the optimized parameters improves with increasing size of the simulated crystal volume. The wall clock time for computing quite large crystal volumes can be kept within reasonable limits by the parallel calculation of many crystals (clones) generated for each model parameter set on a super- or grid computer. The faulted layer stacking in single crystals of trigonal three-pointedstar- shaped tris(bicylco[2.1.1]hexeno)benzene molecules serves as an example for the numerical computations. Based on numerical values of seven model parameters (reference parameters), nearly noise-free reference intensities of 14 diffuse streaks were simulated from 1280 clones, each consisting of 96 000 layers (reference crystal). The parameters derived from the reference intensities with GA, PSO and DE were compared with the original reference parameters as a function of the simulated total crystal volume. The statistical distribution of structural motifs in the simulated crystals is in good agreement with that in the reference crystal. The results found with the growth model for layer stacking disorder are applicable to other disorder types and modeling techniques, Monte Carlo in particular.
Resumo:
In astrophysical regimes where the collisional excitation of hydrogen atoms is relevant, the cross-sections for the interactions of hydrogen atoms with electrons and protons are necessary for calculating line profiles and intensities. In particular, at relative velocities exceeding ∼1000 km s−1, collisional excitation by protons dominates over that by electrons. Surprisingly, the H–H+ cross-sections at these velocities do not exist for atomic levels of n≥ 4, forcing researchers to utilize extrapolation via inaccurate scaling laws. In this study, we present a faster and improved algorithm for computing cross-sections for the H–H+ collisional system, including excitation and charge transfer to the n≥ 2 levels of the hydrogen atom. We develop a code named BDSCX which directly solves the Schrödinger equation with variable (but non-adaptive) resolution and utilizes a hybrid spatial-Fourier grid. Our novel hybrid grid reduces the number of grid points needed from ∼4000n6 (for a ‘brute force’, Cartesian grid) to ∼2000n4 and speeds up the computation by a factor of ∼50 for calculations going up to n= 4. We present (l, m)-resolved results for charge transfer and excitation final states for n= 2–4 and for projectile energies of 5–80 keV, as well as fitting functions for the cross-sections. The ability to accurately compute H–H+ cross-sections to n= 4 allows us to calculate the Balmer decrement, the ratio of Hα to Hβ line intensities. We find that the Balmer decrement starts to increase beyond its largely constant value of 2–3 below 10 keV, reaching values of 4–5 at 5 keV, thus complicating its use as a diagnostic of dust extinction when fast (∼1000 km s−1) shocks are impinging upon the ambient interstellar medium.
Resumo:
Simulating the spatio-temporal dynamics of inundation is key to understanding the role of wetlands under past and future climate change. Earlier modelling studies have mostly relied on fixed prescribed peatland maps and inundation time series of limited temporal coverage. Here, we describe and assess the the Dynamical Peatland Model Based on TOPMODEL (DYPTOP), which predicts the extent of inundation based on a computationally efficient TOPMODEL implementation. This approach rests on an empirical, grid-cell-specific relationship between the mean soil water balance and the flooded area. DYPTOP combines the simulated inundation extent and its temporal persistency with criteria for the ecosystem water balance and the modelled peatland-specific soil carbon balance to predict the global distribution of peatlands. We apply DYPTOP in combination with the LPX-Bern DGVM and benchmark the global-scale distribution, extent, and seasonality of inundation against satellite data. DYPTOP successfully predicts the spatial distribution and extent of wetlands and major boreal and tropical peatland complexes and reveals the governing limitations to peatland occurrence across the globe. Peatlands covering large boreal lowlands are reproduced only when accounting for a positive feedback induced by the enhanced mean soil water holding capacity in peatland-dominated regions. DYPTOP is designed to minimize input data requirements, optimizes computational efficiency and allows for a modular adoption in Earth system models.