972 resultados para Gravity and Quantization
Resumo:
The lunar sphere of influence, whose radius is some 66,300 km, has regions of stable orbits around the Moon and also regions that contain trajectories which, after spending some time around the Moon, escape and are later recaptured by lunar gravity. Both the escape and the capture occur along the Lagrangian equilibrium points L1 and L2. In this study, we mapped out the region of lunar influence considering the restricted three-body Earth-Moon-particle problem and the four-body Sun-Earth-Moon-particle (probe) problem. We identified the stable trajectories, and the escape and capture trajectories through the L I and L2 in plots of the eccentricity versus the semi-major axis as a function of the time that the energy of the osculating lunar trajectory in the two-body Moon-particle problem remains negative. We also investigated the properties of these routes, giving special attention to the fact that they supply a natural mechanism for performing low-energy transfers between the Earth and the Moon, and can thus be useful on a great number of future missions. (C) 2007 Published by Elsevier Ltd on behalf of COSPAR.
Resumo:
Acute renal failure (ARF) is a frequent complication in hospitalized patients and is strongly related to increase in mortality. In order to analyze the clinical outcome and the prognostic factors in hospital-acquired ARF a prospective study was performed. Data from 200 patients with established ARF during the period of January 1987 through July 1990 were collected. The incidence of ARF was 4.9/1000 admissions. Renal ischemia (50%) and nephrotoxic drugs (21%) were the main etiologic factors. The histologic study done in 43 patients showed: acute tubular necrosis (53%), tubular hydropic degeneration (16%), glomerulopathies (16%), and other lesions (15%). Dialysis therapy was performed in 101 patients. The mortality rate was 46.5% and the most important causes of death were. sepsis (38%), respiratory failure (19%), and multiple organ failure (11%). Higher mortality was observed in oliguric patients (62.9%) than nonoliguric (34.5%) (p < 0.05) and in ischemic renal failure (56.7%) when compared to nephrotoxic renal failure (14.7%) (p < 0.05). As primary cause of death was not associated to the acute renal failure, conclude that acute renal failure is an important marker of the gravity of the underlying disease and not the cause of death.
Resumo:
Several methods have been proposed for calculations of the eccentricity function for a high value of the eccentricity, however they cannot be used when the high degree and order coefficients of gravity fields are taken into account. The method proposed by Wnuk(1) is numerically stable in this case, but when is used. a large number of terms occurs in formulas for geopotential perturbations. In this paper we propose an application of expansions of some functions of the eccentric anomaly E as well as Hansen coefficients in power series of (e - e*), where e* is a fixed value of the eccentricity derived by da Silva Fernandes(2,3,4). These series are convergent for all e < 1.
Resumo:
We study the role of the thachyonic excitation which emerges from the quantum electrodynamics in two dimensions with Podolsky term. The quantization is performed by using path integral framework and the operator approach.
Resumo:
The spectral principle of Connes and Chamseddine is used as a starting point to define a discrete model for Euclidean quantum gravity. Instead of summing over ordinary geometries, we consider the sum over generalized geometries where topology, metric, and dimension can fluctuate. The model describes the geometry of spaces with a countable number n of points, and is related to the Gaussian unitary ensemble of Hermitian matrices. We show that this simple model has two phases. The expectation value
Resumo:
In this brief article we discuss spin-polarization operators and spin-polarization states of 2 + 1 massive Dirac fermions and find a convenient representation by the help of 4-spinors for their description. We stress that in particular the use of such a representation allows us to introduce the conserved covariant spin operator in the 2 + 1 field theory. Another advantage of this representation is related to the pseudoclassical limit of the theory. Indeed, quantization of the pseudoclassical model of a spinning particle in 2 + 1 dimensions leads to the 4-spinor representation as the adequate realization of the operator algebra, where the corresponding operator of a first-class constraint, which cannot be gauged out by imposing the gauge condition, is just the covariant operator previously introduced in the quantum theory.
Resumo:
The SU(2) Shyrme model, expanding in the collective coordinates variables, gives rise to second-class constraints. Recently this system was embedded in a more general Abelian gauge theory using the BFFT Hamiltonian method. in this work we quantize this gauge theory computing the Noether current anomaly using for this two different methods: an operatorial Dirac first class formalism and the non-local BV quantization coupled with the Fujikawa regularization procedure. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Using a canonical formulation, the stability of the rotational motion of artificial satellites is analyzed considering perturbations due to the gravity gradient torque. Here Andoyer's variables are used to describe the rotational motion. One of the approaches that allow the analysis of the stability of Hamiltonian systems needs the reduction of the Hamiltonian to a normal form. Firstly equilibrium points are found. Using generalized coordinates, the Hamiltonian is expanded in the neighborhood of the linearly stable equilibrium points. In a next step a canonical linear transformation is used to diagonalize the matrix associated to the linear part of the system. The quadratic part of the Hamiltonian is normalized. Based in a Lie-Hori algorithm a semi-analytic process for normalization is applied and the Hamiltonian is normalized up to the fourth order. Once the Hamiltonian is normalized up to order four, the analysis of stability of the equilibrium point is performed using the theorem of Kovalev and Savichenko. This semi-analytical approach was applied considering some data sets of hypothetical satellites. For the considered satellites it was observed few cases of stable motion. This work contributes for space missions where the maintenance of spacecraft attitude stability is required.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this note we show that the induced 2D-gravity SL(2, ℝ) currents can be defined in a gauge-independent way although they manifest themselves as generators of residual symmetries only in some special gauges. In the Coulomb gas representation we investigate two approaches, namely one resembling string field theory and another that emphasizes the SL(2, ℝ) structure in the phase space. In the conformal gauge we propose a solution of the Liouville theory in terms of the SL(2, ℝ) currents.
Resumo:
We comment on the off-critical perturbations of WZNW models by a mass term as well as by another descendent operator, when we can compare the results with further algebra obtained from the Dirac quantization of the model, in such a way that a more general class of models be included. We discover, in both cases, hidden Kac-Moody algebras obeyed by some currents in the off-critical case, which in several cases are enough to completely fix the correlation functions.
Resumo:
The great simplicity attained by the Weyl-van der Waerden spinor technique in the evaluation of helicity invariant amplitudes is shown to apply in the cumbersome calculations within the framework of linearized gravitation. Once the graviton couplings to spin-0, 1/2, 1, and 3/2 particles are given, we exhibit the reach of this method by evaluating, as an example, the helicity amplitudes for the process electron + positron → photon + graviton in a very straightforward way. © 1994 Plenum Publishing Corporation.
Resumo:
We quantize a generalized version of the Schwinger model, where the two chiral sectors couples with different strengths to the U(1) gauge field. Starting from a theory which includes a generalized Wess-Zumino term, we obtain the equal time commutation relation for physical fields, both the singular and non-singular cases are considered. The photon propagators are also computed in their gauge dependent and invariant versions. © 1995 Springer-Verlag.
Resumo:
Starting from the Fock space representation of hadron bound states in a quark model, a change of representation is implemented by a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation to the microscopic quark Hamiltonian gives rise to effective hadron-hadron, hadron-quark, and quark-quark Hamiltonians. An effective baryon Hamiltonian is derived using a simple quark model. The baryon Hamiltonian is free of the post-prior discrepancy which usually plagues composite-particle effective interactions.