881 resultados para Grain de pollen


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we review some of the most important aspects of recent work on Ragweed (Ambrosia) and birch (Betula) concerning: 1) sources, 2) trends & phenology and 3) dispersion and transformation. Sources: At Northern latitudes the birch fraction in forests usually exceeds 50% of all broadleaved trees and the abundance of birch decreases with latitude from 5%-20% in many mid-latitude regions and down to 0%-2% in more southern areas. Birches are also commonly found in small woodlands or planted as ornamental trees in urban areas. Ragweeds are herbaceous weed species that are associated with areas of disturbance. Ragweed is native to North America, but considered an invasive species in Europe, Australia and China. In Europe, the four main centres are: The Pannonian Plain, Ukraine, The Po Valley (Italy) and the Rhone Valley (France). Trends & Phenology: Birch pollen seasons have started earlier during the last decades. This trend appears have decreased during recent years despite increasing spring temperatures. Ragweed tends to experience less change in flowering date as ragweed flowering depends on photoperiod. Ragweed is increasing its distribution in Europe, but airborne concentrations of ragweed pollen are not universally increasing, e.g. due to control measures or pest attacks. Dispersion & transformation: The beginning of the birch pollen season is often heralded by episodes of Long Distance Transport (LDT) from the south. Similar LDT episodes are intermittently seen for ragweed, which can reach as far north as Scandinavia. Humidity and air pollution can modify pollen grains during atmospheric transport. This can cause a change in allergenic potential of the pollen grain and is a direction for future research including the effect of co-exposure of air pollution and the transformation of aeroallergens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have analysed the pollen seasons in Worcester for the period 2005–12 for alder (Alnus), birch (Betula) and oak (Quercus) by using back trajectory calculations and produced the first detailed source maps for these three pollen types. The study shows considerable variations in the source–receptor relationship of three of the most important tree pollen types in England with respect to allergy. Long Distance Transport is observed for Quercus and Betula but not for Alnus. The new source maps show a number of high emitting areas for Betula and Quercus, mainly near London, in the Midlands and in Wales. The production of source maps is sensitive to the used type of land cover data and how well they incorporate small woodlands. Two satellite products, Corine Land Cover and Globcover, are compared with the detailed national land cover product Land Cover Map 2007. The broad scale satellite products show either up to 50% less woody coverage or a direct misplacement of woodlands. The Lagrangian back trajectory model, the pollen count observations and the source maps altogether suggest that small woodlands (below 25 ha) play a major role in the overall pollen load in urban areas in England.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airborne pollen transport at micro-, meso-gamma and meso-beta scales must be studied by atmospheric models, having special relevance in complex terrain. In these cases, the accuracy of these models is mainly determined by the spatial resolution of the underlying meteorological dataset. This work examines how meteorological datasets determine the results obtained from atmospheric transport models used to describe pollen transport in the atmosphere. We investigate the effect of the spatial resolution when computing backward trajectories with the HYSPLIT model. We have used meteorological datasets from the WRF model with 27, 9 and 3 km resolutions and from the GDAS files with 1 ° resolution. This work allows characterizing atmospheric transport of Olea pollen in a region with complex flows. The results show that the complex terrain affects the trajectories and this effect varies with the different meteorological datasets. Overall, the change from GDAS to WRF-ARW inputs improves the analyses with the HYSPLIT model, thereby increasing the understanding the pollen episode. The results indicate that a spatial resolution of at least 9 km is needed to simulate atmospheric flows that are considerable affected by the relief of the landscape. The results suggest that the appropriate meteorological files should be considered when atmospheric models are used to characterize the atmospheric transport of pollen on micro-, meso-gamma and meso-beta scales. Furthermore, at these scales, the results are believed to be generally applicable for related areas such as the description of atmospheric transport of radionuclides or in the definition of nuclear-radioactivity emergency preparedness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Allergies to grass pollen are the number one cause of outdoor hay fever. The human immune system reacts with symptoms to allergens from pollen. Objective: We investigated the natural variability in release of the major group 5 allergen from grass pollen across Europe. Methods: Airborne pollen and allergens were simultaneously collected daily with a volumetric spore trap and a high-volume cascade impactor at 10 sites across Europe for 3 consecutive years. Group 5 allergen was determined with a Phl p 5 specific ELISA in two fractions of ambient air: Particulate Matter (PM) >10μm and 10μm>PM>2.5μm. Mediator release by ambient air was determined in FcεR1-humanized basophils. Origin of pollen was modeled and condensed to pollen potency maps. Results: On average grass pollen released 2.3 pg Phl p 5/pollen. Allergen release per pollen (potency) varied substantially, ranging from 0 to 9 pg Phl p 5/pollen (5 to 95% percentile). The main variation was locally day-to-day. Average potency maps across Europe varied between years. Mediator release from basophilic granulocytes correlated better with allergen/m3 (r2=0.80, p<0.001) than with pollen/m3 (r2=0.61, p<0.001). In addition, pollen released different amounts of allergen in the nonpollen bearing fraction of ambient air depending on humidity. Conclusion: Across Europe, the same amount of pollen released substantially different amounts of group 5 grass pollen allergen. This variation in allergen release is on top of variations in pollen counts. Molecular aerobiology, i.e. determining allergen in ambient air, may be a valuable addition to pollen counting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study improves the spatial coverage of top-down Ambrosia pollen source inventories for Europe by expanding the methodology to Austria, a country that is challenging in terms of topography and the distribution of ragweed plants. The inventory combines annual ragweed pollen counts from 19 pollen-monitoring stations in Austria (2004–2013), 657 geographical observations of Ambrosia plants, a Digital Elevation Model (DEM), local knowledge of ragweed ecology and CORINE land cover information from the source area. The highest mean annual ragweed pollen concentrations were generally recorded in the East of Austria where the highest densities of possible growth habitats for Ambrosia were situated. Approximately 99% of all observations of Ambrosia populations were below 745 m. The European infection level varies from 0.1% at Freistadt in Northern Austria to 12.8% at Rosalia in Eastern Austria. More top-down Ambrosia pollen source inventories are required for other parts of Europe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Ambrosia artemisiifolia L. is a noxious invasive alien species in Europe. It is an important aeroallergen and millions of people are exposed to its pollen. Objective. The main aim of this study is to show that atmospheric concentrations of Ambrosia pollen recorded in Denmark can be derived from local or more distant sources. Methods. This was achieved by using a combination of pollen measurements, air mass trajectory calculations using the HYPLIT model and mapping all known Ambrosia locations in Denmark and relating them to land cover types. Results. The annual pollen index recorded in Copenhagen during a 15-year period varied from a few pollen grains to more than 100. Since 2005, small quantities of Ambrosia pollen has been observed in the air every year. We have demonstrated, through a combination of Lagrangian back-trajectory calculations and atmospheric pollen measurements, that pollen arrived in Denmark via long-distance transport from centres of Ambrosia infection, such as the Pannonian Plain and Ukraine. Combining observations with results from a local scale dispersion model show that it is possible that Ambrosia pollen could be derived from local sources identified within Denmark. Conclusions. The high allergenic capacity of Ambrosia pollen means that only small amounts of pollen are relevant for allergy sufferers, and just a few plants will be sufficient to produce enough pollen to affect pollen allergy sufferers within a short distance from the source. It is necessary to adopt control measures to restrict Ambrosia numbers. Recommendations for the removal of all Ambrosia plants can effectively reduce the amount of local pollen, as long as the population of Ambrosia plants is small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Allergenic ragweed (Ambrosia spp.) pollen grains, after being released from anthers, can be dispersed by air masses far from their source. However, the action of air temperature,humidity and solar radiation on pollen grains in the atmosphere could impact on the ability of long distance transported (LDT) pollen to maintain allergenic potency. Here, we report that the major allergen of Ambrosia artemisiifolia pollen (Amb a 1) collected in ambient air during episodes of LDT still have immunoreactive properties. The amount of Amb a 1 found in LDT ragweed pollen grains was not constant and varied between episodes. In addition to allergens in pollen sized particles, we detected reactive Amb a 1 in subpollen sized respirable particles. These findings suggest that ragweed pollen grains have the potential to cause allergic reactions, not only in the heavily infested areas but, due to LDT episodes, also in the regions unaffected by ragweed populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The invasive alien species Ambrosia artemisiifolia (common or short ragweed) is increasing its range in Europe. In the UK and the Netherlands airborne concentrations of Ambrosia pollen are usually low. However, more than 30 Ambrosia pollen grains per cubic metre of air (above the level capable to trigger allergic symptoms) were recorded in Leicester (UK) and Leiden (NL) on 4 and 5 September 2014. Objective: The aims of this study were to determine whether the highly allergenic Ambrosia pollen recorded during the episode could be the result of long distance transport, to identify the potential sources of these pollen grains and describe the conditions that facilitated this possible long distance transport. Methods: Airborne Ambrosia pollen data were collected at 10 sites in Europe. Back trajectory and atmospheric dispersion calculations were performed using HYSPLIT_4. Results: Back trajectories calculated at Leicester and Leiden show that higher altitude air masses (1500m) originated from source areas on the Pannonian Plain and Ukraine. During the episode, air masses veered to the west and passed over the Rhône Valley. Dispersion calculations showed that the atmospheric conditions were suitable for Ambrosia pollen released from the Pannonian Plain and the Rhône Valley to reach the higher levels and enter the air stream moving to Northwest Europe where they were deposited at ground level and recorded by monitoring sites. Conclusions: The study indicates that the Ambrosia pollen grains recorded during the episode in Leicester and Leiden were probably not produced by local sources, but transported long distances from potential source regions in East Europe, i.e. the Pannonian Plain and Ukraine, as well as the Rhône Valley in France.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antioxidant activity and phenolic composition of brewer's spent grain (BSG) extracts obtained by microwave-assisted extraction from twomalt types (light and darkmalts) were investigated. The total phenolic content (TPC) and antioxidant activity among the light BSG extracts (pilsen, melano, melano 80 and carared)were significantly different (p b 0.05) compared to dark extracts (chocolate and black types), with the pilsen BSG showing higher TPC (20 ± 1 mgGAE/g dry BSG). In addition, the antioxidant activity assessed by 2,2-diphenyl- 1-picrylhydrazyl, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and deoxyribose assays decreased as a result of increasing kilning temperatures in the following order: pilsen N melano N melano 80 N carared N chocolate N black. HPLC-DAD/ESI-MS/MS analysis indicated the presence of phenolic acids, such as ferulic, p-coumaric and syringic acids, as well as several isomeric ferulate dehydrodimers and one dehydrotrimer. Chocolate and black extracts, obtained frommalts submitted to the highest kilning temperatures, showed the lowest levels of ferulic and p-coumaric acids. These results suggested that BSG extracts from pilsen malt might be used as an inexpensive and good natural source of antioxidants with potential interest for the food, pharmaceutical and/or cosmetic industries after purification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dans cet article, nous présenterons une étude comparative de quelques techniques de manipulation du signal comme la Transformée de Fourier à Court Terme, la Synthèse Granulaire Asynchrone et PSOLA, notamment dans le cadre de leur utilisation en temps réel. Nous présenterons succinctement le fonctionnement de ces trois méthodes dans l’environnement Max / MSP avec l’utilisation de la librairie GABOR. La manipulation des paramètres propres à chaque méthode a des conséquences sur les variables musicales, et l’utilisation de ces méthodes implique des corrélations entre les paramètres techniques du traitement du signal et des attributs musicaux spécifiques. Ainsi, nous essayerons d’explorer les espaces des paramètres et de la perception musicales entre le temps, la période et le spectre (les rythmes, les fréquences et les timbres) en comparant les différentes méthodes en vue de leur croisement dans un système de traitement commun.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND AIMS: Pollen and seed dispersal in herbaceous insect-pollinated plants are often restricted, inducing strong population structure. To what extent this influences mating within and among patches is poorly understood. This study investigates the influence of population structure on pollen performance using controlled pollinations and genetic markers. METHODS: Population structure was investigated in a patchily distributed population of gynodioecious Silene vulgaris in Switzerland using polymorphic microsatellite markers. Experimental pollinations were performed on 21 hermaphrodite recipients using pollen donors at three spatial scales: (a) self-pollination; (b) within-patch cross-pollinations; and (c) between-patch cross-pollinations. Pollen performance was then compared with respect to crossing distance. KEY RESULTS: The population of S. vulgaris was characterized by a high degree of genetic sub-structure, with neighbouring plants more related to one another than to distant individuals. Inbreeding probably results from both selfing and biparental inbreeding. Pollen performance increased with distance between mates. Between-patch pollen performed significantly better than both self- and within-patch pollen donors. However, no significant difference was detected between self- and within-patch pollen donors. CONCLUSIONS: The results suggest that population structure in animal-pollinated plants is likely to influence mating patterns by favouring cross-pollinations between unrelated plants. However, the extent to which this mechanism could be effective as a pre-zygotic barrier preventing inbred mating depends on the patterns of pollinator foraging and their influence on pollen dispersal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole-grain foods are touted for multiple health benefits, including enhancing insulin sensitivity and reducing type 2 diabetes risk. Recent genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) associated with fasting glucose and insulin concentrations in individuals free of diabetes. We tested the hypothesis that whole-grain food intake and genetic variation interact to influence concentrations of fasting glucose and insulin. Via meta-analysis of data from 14 cohorts comprising ∼ 48,000 participants of European descent, we studied interactions of whole-grain intake with loci previously associated in GWAS with fasting glucose (16 loci) and/or insulin (2 loci) concentrations. For tests of interaction, we considered a P value <0.0028 (0.05 of 18 tests) as statistically significant. Greater whole-grain food intake was associated with lower fasting glucose and insulin concentrations independent of demographics, other dietary and lifestyle factors, and BMI (β [95% CI] per 1-serving-greater whole-grain intake: -0.009 mmol/l glucose [-0.013 to -0.005], P < 0.0001 and -0.011 pmol/l [ln] insulin [-0.015 to -0.007], P = 0.0003). No interactions met our multiple testing-adjusted statistical significance threshold. The strongest SNP interaction with whole-grain intake was rs780094 (GCKR) for fasting insulin (P = 0.006), where greater whole-grain intake was associated with a smaller reduction in fasting insulin concentrations in those with the insulin-raising allele. Our results support the favorable association of whole-grain intake with fasting glucose and insulin and suggest a potential interaction between variation in GCKR and whole-grain intake in influencing fasting insulin concentrations.