892 resultados para Gonadotropins mrna levels


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background. It has been reported that the histone deacetylase inhibitor (iHDAc) trichostatin A (TSA) induces an increase in MDR1 gene transcription (ABCB1). This result would compromise the use of iHDACs in combination with other cytotoxic agents that are substrates of P-glycoprotein (Pgp). It has also been reported the use of alternative promoters by the ABCB1 gene and the existence of a traslational control of Pgp protein. Finally, the ABCB1 gene is located in a genetic locus with the nested gene RUNDC3B in the complementary DNA strand, raising the possibility that RUNDC3B expression could interfere with ABCB1 alternative promoter regulation. Methods. A combination of RT-PCR, real time RT-PCR, Western blot and drug accumulation assays by flow cytometry have been used in this study. Results. The iHDACs-induced increase in MDR1 mRNA levels is not followed by a subsequent increase in Pgp protein levels or activity in several pancreatic and colon carcinoma cell lines, suggesting a traslational control of Pgp in these cell lines. In addition, the MDR1 mRNA produced in these cell lines is shorter in its 5' end that the Pgp mRNA produced in cell lines expressing Pgp protein. The different size of the Pgp mRNA is due to the use of alternative promoters. We also demonstrate that these promoters are differentially regulated by TSA. The translational blockade of Pgp mRNA in the pancreatic carcinoma cell lines could be related to alterations in the 5' end of the MDR1 mRNA in the Pgp protein expressing cell lines. In addition, we demonstrate that the ABCB1 nested gene RUNDC3B expression although upregulated by TSA is independent of the ABCB1 alternative promoter used. Conclusions. The results show that the increase in MDR1 mRNA expression after iHDACs treatment is clinically irrelevant since this mRNA does not render an active Pgp protein, at least in colon and pancreatic cancer cell lines. Furthermore, we have demonstrated that TSA in fact, differentially regulates both ABCB1 promoters, downregulating the upstream promoter that is responsible for active P-glycoprotein expression. These results suggest that iHDACs such as TSA may in fact potentiate the effects of antitumoral drugs that are substrates of Pgp. Finally, we have also demonstrate that TSA upregulates RUNDC3B mRNA independently of the ABCB1 promoter in use.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To investigate whether Citrus sudachi harvested at two stages of maturity can induce toxicity in a cell-specific manner and to determine the possible mechanisms of Citrus sudachi-induced cytotoxic responses in two types of cancer cells (human lung adenocarcinoma A549 and hepatocellular carcinoma HepG2 cells) and two normal cell lines (lung 16HBE140- and liver CHANG cells). Methods: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and annexin V/propidium iodidle assay were used to test the antiproliferative activity and apoptosis of methanol extract of Citrus sudachi, respectively. Griess reaction and reverse transcriptase-polymerase chain reaction (RT-PCR) were carried out to evaluate nitric oxide (NO•) production and the mRNA levels of inhibitors of apoptosis (IAP). Results: Citrus sudachi exerted cytotoxicity in a time-dependent manner in cancer cells which increased with increase in maturity but did not affect normal cells. Citrus sudachi was found to induce accumulation of cells in the sub-G1 cell cycle phase, fragmentation of DNA and cell death with characteristics of apoptosis, in both types of cancer cells. Moreover, Citrus sudachi upregulated cellular NO• produced by activation of nitric oxide synthase (NOS), while it suppressed the levels of IAP mRNA in both types of cancer cells. Conclusion: The results obtained suggest that Citrus sudachi induces apoptosis in A549 and HepG2 cells, which may be mediated by NO•. There is need for further studies on the role of Citrus sudachi in cancer treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The eggs of the dengue fever vector Aedes aegypti possess the ability to undergo an extended quiescence period hosting a fully developed first instar larvae within its chorion. As a result of this life history stage, pharate larvae can withstand months of dormancy inside the egg where they depend on stored reserves of maternal origin. This adaptation known as pharate first instar quiescence, allows A. aegypti to cope with fluctuations in water availability. An examination of this fundamental adaptation has shown that there are trade-offs associated with it. Aedes aegypti mosquitoes are frequently associated with urban habitats that may contain metal pollution. My research has demonstrated that the duration of this quiescence and the extent of nutritional depletion associated with it affects the physiology and survival of larvae that hatch in a suboptimal habitat; nutrient reserves decrease during pharate first instar quiescence and alter subsequent larval and adult fitness. The duration of quiescence compromises metal tolerance physiology and is coupled to a decrease in metallothionein mRNA levels. My findings also indicate that even low levels of environmentally relevant larval metal stress alter the parameters that determine vector capacity. My research has also demonstrated that extended pharate first instar quiescence can elicit a plastic response resulting in an adult phenotype distinct from adults reared from short quiescence eggs. Extended pharate first instar quiescence affects the performance and reproductive fitness of the adult female mosquito as well as the nutritional status of its progeny via maternal effects in an adaptive manner, i.e., anticipatory phenotypic plasticity results as a consequence of the duration of pharate first instar quiescence and alternative phenotypes may exist for this mosquito with quiescence serving as a cue possibly signaling the environmental conditions that follow a dry period. M findings may explain, in part, A. aegypti’s success as a vector and its geographic distribution and have implications for its vector capacity and control.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mycobacterium bovis causes animal tuberculosis (TB) in cattle, humans, and other mammalian species, including pigs. The goal of this study was to experimentally assess the responses of pigs with and without a history of tonsillectomy to oral vaccination with heat-inactivated M. bovis and challenge with a virulent M. bovis field strain, to compare pig and wild boar responses using the same vaccination model as previously used in the Eurasian wild boar (Sus scrofa), to evaluate the use of several enzyme-linked immunosorbent assays (ELISAs) and lateral flow tests for in vivo TB diagnosis in pigs, and to verify if these tests are influenced by oral vaccination with inactivated M. bovis. At necropsy, the lesion and culture scores were 20% to 43% higher in the controls than those in the vaccinated pigs. Massive M. bovis growth from thoracic tissue samples was observed in 4 out of 9 controls but in none of the 10 vaccinated pigs. No effect of the presence or absence of tonsils was observed on these scores, suggesting that tonsils are not involved in the protective response to this vaccine in pigs. The serum antibody levels increased significantly only after challenge. At necropsy, the estimated sensitivities of the ELISAs and dual path platform (DPP) assays ranged from 89% to 94%. In the oral mucosa, no differences in gene expression were observed in the control group between the pigs with and without tonsils. In the vaccinated group, the mRNA levels for chemokine (C-C motif) receptor 7 (CCR7), interferon beta (IFN-β), and methylmalonyl coenzyme A mutase (MUT) were higher in pigs with tonsils. Complement component 3 mRNA levels in peripheral blood mononuclear cells (PBMC) increased with vaccination and decreased after M. bovis challenge. This information is relevant for pig production in regions that are endemic for M. bovis and for TB vaccine research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND Field vaccination trials with Mycobacterium bovis BCG, an attenuated mutant of M. bovis, are ongoing in Spain, where the Eurasian wild boar (Sus scrofa) is regarded as the main driver of animal tuberculosis (TB). The oral baiting strategy consists in deploying vaccine baits twice each summer, in order to gain access to a high proportion of wild boar piglets. The aim of this study was to assess the response of wild boar to re-vaccination with BCG and to subsequent challenge with an M. bovis field strain. RESULTS BCG re-vaccinated wild boar showed reductions of 75.8% in lesion score and 66.9% in culture score, as compared to unvaccinated controls. Only one of nine vaccinated wild boar had a culture-confirmed lung infection, as compared to seven of eight controls. Serum antibody levels were highly variable and did not differ significantly between BCG re-vaccinated wild boar and controls. Gamma IFN levels differed significantly between BCG re-vaccinated wild boar and controls. The mRNA levels for IL-1b, C3 and MUT were significantly higher in vaccinated wild boar when compared to controls after vaccination and decreased after mycobacterial challenge. CONCLUSIONS Oral re-vaccination of wild boar with BCG yields a strong protective response against challenge with a field strain. Moreover, re-vaccination of wild boar with BCG is not counterproductive. These findings are relevant given that re-vaccination is likely to happen under real (field) conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increased activity of the noradrenergic system in the amygdala has been suggested to contribute to the hyperarousal symptoms associated with post-traumatic stress disorder (PTSD). However, only two studies have examined the content of noradrenaline or its metabolites in the amygdala of rats previously exposed to traumatic stress showing inconsistent results. The aim of this study was to investigate the effects of an inescapable foot shock (IFS) procedure 1) on reactivity to novelty in an open-field (as an index of hyperarousal), and 2) on noradrenaline release in the amygdala during an acute stress. To test the role of noradrenaline in amygdala, we also investigated the effects of microinjections of propranolol, a β-adrenoreceptor antagonist, and clenbuterol, a β-adrenoreceptor agonist, into the amygdala of IFS and control animals. Finally, we evaluated the expression of mRNA levels of β-adrenoreceptors (β1 and β2) in the amygdala, the hippocampus and the prefrontal cortex. Male Wistar rats (3 months) were stereotaxically implanted with bilateral guide cannulae. After recovering from surgery, animals were exposed to IFS (10 shocks, 0.86 mA, and 6 seconds per shock) and seven days later either microdialysis or microinjections were performed in amygdala. Animals exposed to IFS showed a reduced locomotion compared to non-shocked animals during the first 5 minutes in the open-field. In the amygdala, IFS animals showed an enhanced increase of noradrenaline induced by stress compared to control animals. Bilateral microinjections of propranolol (0.5 μg) into the amygdala one hour before testing in the open-field normalized the decreased locomotion observed in IFS animals. On the other hand, bilateral microinjections of clenbuterol (30 ng) into the amygdala of control animals did not change the exploratory activity induced by novelty in the open field. IFS modified the mRNA expression of β1 and β2 adrenoreceptors in the prefrontal cortex and the hippocampus. These results suggest that an increased noradrenergic activity in the amygdala contributes to the expression of hyperarousal in an animal model of PTSD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gut microbiota colonization is a key event for host physiology that occurs early in life. Disruption of this process leads to altered brain development which ultimately manifests as changes in brain function and behaviour in adulthood. Studies using germ-free mice highlight the extreme impact on brain health that results from life without commensal microbes, however the impact of microbiota disturbances occurring in adulthood is less studied. To this end, we depleted the gut microbiota of 10-week-old male Sprague Dawley rats via chronic antibiotic treatment. Following this marked, sustained depletion of the gut bacteria, we investigated behavioural and molecular hallmarks of gut-brain communication. Our results reveal that depletion of the gut microbiota during adulthood results in deficits in spatial memory as tested by Morris water maze, increased visceral sensitivity and a greater display of depressive-like behaviours in the forced swim test. In tandem with these clear behavioural alterations we found change in altered CNS serotonin concentration along with changes in the mRNA levels of corticotrophin releasing hormone receptor 1 and glucocorticoid receptor. Additionally, we found changes in the expression of BDNF, a hallmark of altered microbiota-gut-brain axis signaling. In summary, this model of antibiotic-induced depletion of the gut microbiota can be used for future studies interested in the impact of the gut microbiota on host health without the confounding developmental influence of early-life microbial alterations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated whether BRCA1 mRNA expression levels may represent a biomarker of survival in sporadic epithelial ovarian cancer following chemotherapy treatment. EXPERIMENTAL DESIGN: The effect of loss of BRCA1 expression on chemotherapy response in ovarian cancer was measured in vitro using dose inhibition assays and Annexin V flow cytometry. Univariate and multivariate analyses were done to evaluate the relationship between BRCA1 mRNA expression levels and survival after chemotherapy treatment in 70 fresh frozen ovarian tumors. RESULTS: We show that inhibition of endogenous BRCA1 expression in ovarian cancer cell lines results in increased sensitivity to platinum therapy and decreased sensitivity to antimicrotubule agents. In addition, we show that patients with low/intermediate levels of BRCA1 mRNA have a significantly improved overall survival following treatment with platinum-based chemotherapy in comparison with patients with high levels of BRCA1 mRNA (57.2 versus 18.2 months; P = 0.0017; hazard ratio, 2.9). Furthermore, overall median survival for higher-BRCA1-expressing patients was found to increase following taxane-containing chemotherapy (23.0 versus 18.2 months; P = 0.12; hazard ratio, 0.53). CONCLUSIONS: We provide evidence to support a role for BRCA1 mRNA expression as a predictive marker of survival in sporadic epithelial ovarian cancer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Chronic kidney disease (CKD) patients on dialysis are prone to vitamin D insufficiency despite oral vitamin D supplementation. Here, we studied whether narrow-band ultraviolet B (NB-UVB) exposures improve vitamin D balance.

Methods: 14 haemodialysis patients and 15 healthy subjects receiving oral cholecalciferol 20 µg daily got nine NB-UVB exposures on the entire body. Serum 25-hydroxyvitamin D (25(OH)D) was measured by radioimmunoassay. Cutaneous mRNA expression levels of CYP27A1 and CYP27B1, two enzymes required for hydroxylation of vitamin D into its active metabolite, were also measured.

Results: The baseline serum 25(OH)D concentration was 57.6 ± 18.2 nmol/l in the CKD patients and 74.3 ± 14.8 nmol/l in the healthy subjects. The NB-UVB course increased serum 25(OH)D by 14.0 nmol/l (95% CI 8.7-19.5) and 17.0 nmol/l (CI 13.7-20.2), respectively. At baseline the CKD patients showed significantly increased CYP27B1 levels compared to the healthy subjects.

Conclusions: A short NB-UVB course is an efficient way to improve vitamin D balance in CKD patients on dialysis who are receiving oral vitamin D supplementation. The increased cutaneous CYP27B1 levels in the CKD patients suggest that the loss of renal activity of this enzyme is at least partially compensated for by the skin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Skeletal muscle is the source of pro- and anti-inflammatory cytokines, and recently, it has been recognized as an important source of interleukin 6 (IL-6), a cytokine that exerts inhibitory effects on several pro-inflammatory cytokines. Although dynamic chronic resistance training has been shown to produce the known ""repeated bout effect"", which abolishes the acute muscle damage, performing of high-intensity resistance training has been regarded highly advisable, at least from the hypertrophy perspective. On the other hand, a more therapeutic, ""non-damaging"" resistance training program, mainly composed of concentric forces, low frequency/low volume of training, and the same exercise, could theoretically benefit the muscle when the main issue is to avoid muscle inflammation (as in the treatment of several ""low-grade"" inflammatory diseases) because the acute effect of each resistance exercise session could be diminished/avoided, at the same time that the muscle is still being overloaded in a concentric manner. However, the benefits of such ""less demanding"" resistance training schedule on the muscle inflammatory profile have never been investigated. Therefore, we assessed the protein expression of IL-6, TNF-alpha, IL-10, IL-10/TNF-alpha ratio, and HSP70 levels and mRNA expression of SCF(beta-TrCP), IL-15, and TLR-4 in the skeletal muscle of rats submitted to resistance training. Briefly, animals were randomly assigned to either a control group (S, n = 8) or a resistance-trained group (T, n = 7). Trained rats were exercised over a duration of 12 weeks (two times per day, two times per week). Detection of IL-6, TNF-alpha, IL-10, and HSP70 protein expression was carried out by western blotting and SCF(beta-TrCP) (SKP Cullin F-Box Protein Ligases), a class of enzymes involved in the ubiquitination of protein substrates to proteasomal degradation, IL-15, and TLR-4 by RT-PCR. Our results show a decreased expression of TNF-alpha and TLR4 mRNA (40 and 60%, respectively; p < 0.05) in the plantar muscle from trained, when compared with control rats. In conclusion, exercise training induced decreased TNF-alpha and TLR-4 expressions, resulting in a modified IL-10/TNF-alpha ratio in the skeletal muscle. These data show that, in healthy rats, 12-week resistance training, predominantly composed of concentric stimuli and low frequency/low volume schedule, down regulates skeletal muscle production of cytokines involved in the onset, maintenance, and regulation of inXammation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)