997 resultados para Gold alloys


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ti45Zr35Ni13Pd7 alloys are prepared by melt spinning at different cooling rates (v). The phase structure and electrochemical hydrogen storage performance are investigated. When U is 10 m/s, the alloy consists of icosahedral quasicrystalline phase (I-phase), C14 Laves phase and a little amorphous phase. When v increases to 20 or 30 m/s, a mixed structure of I-phase and amorphous phase is formed. Maximum discharge capacity of alloy electrode decreases from 156 mAh/g (v = 10 m/s) to 139 mAh/g (v = 30 m/s) with increasing v. High-rate discharge ability at the discharge current density of 240 mA/g decreases monotonically from 61.2% (v = 10 m/s) to 56.8% (v = 30 m/s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ti45Zr35Ni20-xPdx (x = 0, 1, 3, 5 and 7, at%) alloys were prepared by melt-spinning. The phase structure and electrochemical hydrogen storage performances of melt-spun alloys were investigated. The melt-spun alloys were icosahedral quasicrystalline phase, and the quasi-lattice constant increased with increasing x value. The maximum discharge capacity of alloy electrodes increased from 79 mAh/g (x = 0) to 148 mAh/g (x = 7). High-rate dis-chargeability and cycling stability were also enhanced with the increase of Pd content. The improvement in the electrochemical hydrogen storage characteristics may be ascribed to better electrochemical activity and oxidation resistance of Pd than that of Ni.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a versatile seed-mediated growth method for selectively synthesizing single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals. In the seed-mediated growth method, cetylpyridinium chloride (CPC) and CPC-capped single-crystalline gold nanocrystals 41.3 nm in size are used as the surfactant and seeds, respectively. The CPC-capped gold seeds can avoid twinning during the growth process, which enables us to study the correlations between the growth conditions and the shapes of the gold nanocrystals. Surface-energy and kinetic considerations are taken into account to understand the formation mechanisms of the single-crystalline gold nanocrystals with varying shapes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The color change induced by triple hydrogen-bonding recognition between melamine and a cyanuric acid derivative grafted on the surface of gold nanoparticles can be used for reliable detection of melamine. Since such a color change can be readily seen by the naked eye, the method enables on-site and real-time detection of melamine in raw milk and infant formula even at a concentration as low as 2.5 ppb without the aid of any advanced instruments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The in situ electrochemical quartz crystal microbalance(EQCM) technique was used to investigate the ion transport of immobilized heteropolyanions at a self-assembled monolayer(SAM) modified gold electrode during electrochemical redox process. A mixed transfer method was presented to analyse the abnormal change of resonant frequency based on the simultaneous insertion/extraction of different ions. The results indicate that the migration of HSO4- anions was indispensable in the redox process of the heteropolyan ions in a I mol/L H2SO4 solution and played a key role in the abnormal change of the resonant frequency. Such a change was attributed to different packing densities derived by means of differently immobilized methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and environment friendly chemical route for detecting latent fingermarks by one-step single-metal nanoparticles deposition method (SND) was achieved successfully on several non-porous items. Gold nanoparticles (AuNPs) synthesized using sodium borohydride as reducing agent in the presence of glucose, were used as working solution for latent fingermarks detection. The SND technique just needs one step to obtain clear ridge details in a wide pH range (2.5-5.0), whereas the standard multi-metal deposition (MMD) technique requires six baths in a narrow pH range (2.5-2.8). The SND is very convenient to detect latent fingermarks in forensic scene or laboratory for forensic operators. The SND technique provided sharp and clear development of latent fingermarks, without background staining, dramatically diminished the bath steps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gold nanoparticles stabilized by amino-terminated ionic liquid (Au-IL) have been in situ noncovalently deposited on poly(sodium 4-styrene-sulfonate) (PSS)-functionalized multiwalled carbon nanotubes (MWCNTs) to form a MWCNTs/PSS/Au-IL nanocomposite. PSS can interact with MWCNTs through hydrophobic interaction. Amino-terminated ionic liquid was applied to reduce aqueous HAuCl4, and the resulting gold nanoparticles were attached to the PSS-functionalized MWCNTs simultaneously. Most gold nanoparticles dispersed well on the functionalized MWCNTs. Transmission electron microscopy, Raman and X-ray photoelectron spectroscopy were used to confirm the composition and structure of the nanocomposites. The resulting MWCNTs/PSS/Au-IL composite exhibits good electrocatalysis toward oxygen and hydrogen peroxide reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three Polypropylene/Poly(ethylene-co-propylene) (PP/EPR) in-reactor alloys produced by a two-stage slurry/gas polymerization had different ethylene contents and mechanical properties, which were achieved by controlling the copolymerization time. The three alloys were fractionated into five fractions via temperature rising dissolution fractionation (TRDF), respectively. The chain structures of the whole samples and their fractions were analyzed using high-temperature gel permeation chromatography (GPC), Fourier transform infrared (FT-IR), C-13 nuclear magnetic resonance (C-13 NMR), and differential scanning calorimetry (DSC) techniques. These three in-reactor alloys mainly contained four portions: ethylenepropylene random copolymer (EPR), ethylene-propylene (EP) segmented and block copolymers, and propylene homopolymer. The increased copolymerization time caused the increased ethylene content of the sample. The weight percent of EPR, EP segmented and block copolymer also became higher.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mg-5Al-0.3Mn-xCe (x = 0-3, wt.%) alloys were prepared by metal mould casting method. The microstructures and mechanical properties were investigated. The results revealed that the main phases of as-cast Mg-5Al-0.3Mn alloy consist of alpha-Mg matrix and beta-Mg17Al12 phase. With the addition of Ce element, Al11Ce3 precipitates were formed and mainly aggregated along the grain boundaries. The amount of the Al11Ce3 precipitates increased with increasing addition of Ce, but the amount of beta-Mg17Al12 phase decreased. The highest tensile strength was obtained in Mg-5Al-0.3Mn-1.5Ce alloy. The ultimate tensile strength (UTS), yield strength (YS) and elongation at room temperature are 203 MPa, 88 MPa and 20%, separately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a simple fluorescent method for sensitive cyanide detection based on the dissolution of Rhodamine B-adsorbed gold nanoparticles by cyanide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We developed a stable, sensitive electrochemiluminescence (ECL) biosensor based on the synthesis of a new sol-gel material with the ion-exchange capacity sol-gel to coimmobilize the Ru(bpy)(3)(2+) and enzyme. The partial sulfonated (3-mercaptopropyl)-trimethoxysilane sol-gel (PSSG) film acted as both an ion exchanger for the immobilization of Ru(bpy)(3)(2+) and a matrix to immobilize gold nanoparticles (AuNPs). The AuNPs/PSSG/Ru(bpy)(3)(2+) film modified electrode allowed sensitive the ECL detection of NADH as low as 1 nM. Such an ability of AuNPs/PSSG/Ru(bpy)(3)(2+) film to promote the electron transfer between Ru(bpy)(3)(2+) and the electrode suggested a new, promising biocompatible platform for the development of dehydrogenase-based ECL biosensors. With alcohol dehydrogenase (ADH) as a model, we then constructed an ethanol biosensor, which had a linear range of 5 mu M to 5.2 mM with a detection limit of 12 nM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a new fluorescent method for sensitive detection of biological thiols in human plasma was developed using a near-infrared (NIR) fluorescent dye, FR 730. The sensing approach was based on the strong affinity of thiols to gold and highly efficient fluorescent quenching ability of gold nanoparticles (Au NPs). In the presence of thiols, the NIR fluorescence would enhance dramatically due to desorption of FR 730 from the surfaces of Au NPs, which allowed the analysis of thiol-containing amino acids in a very simple approach. The size of Au NPs was found to affect the fluorescent assay and the best response for cysteine detection was achieved when using Au NPs with the diameter of 24 nm, where a linear range of 2.5 x 10(-8) M to 4.0 x 10(-6) M and a detection limit of as low as 10 nM was obtained. This method also demonstrated a high selectivity to thiol-containing amino acids due to the strong affinity of thiols to gold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, a simple and novel photochemical synthesis of different gold nanostructures is proposed using solar radiation. This method is rapid, convenient and of low cost, and can be performed under ambient conditions. By adjusting the concentration of sodium acetate (NaAc), different morphologies of the products can be easily obtained. Without NaAc, the products obtained are mainly polyhedral gold particles; lower concentration of NaAc (0.05 and 0.1 M) accelerates the formation of flowerlike gold nanostructures; while higher concentration of NaAc (0.5 M) facilitates the formation of a variety of gold nanowires and nanobelts. It is found that the morphology change of gold nanaostructures is the result of the synergistic effect of poly(diallyl dimethylammonium) chloride (PDDA), Ac- ions, and the pH value. In addition, the different gold nanostructures thus obtained were used as substrates for surface-enhanced Raman scattering (SERS) with p-aminothiophenol (p-ATP) as the probe molecule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method to synthesize Fe3O4 core/Au shell submicrometer structures with very rough surfaces on the nanoscale is reported. The Fe3O4 particles were first modified with uniform polymers through the layer-by-layer technique and then adsorbed a lot of gold nanoseeds for further Au shell formation. The shell was composed of a large number of irregular nanoscale An particles arranged randomly, and there were well-defined boundaries between these Au nanoparticles. The Fe3O4 core/Au shell particles showed strong plasmon resonance absorption in the near-infrared range, and can be separated quickly from solution by an external magnet.