980 resultados para Geometric nonlinearities
Resumo:
Linear and nonlinear optical properties of silicon suboxide SiOx films deposited by plasma-enhanced chemical-vapor deposition have been studied for different Si excesses up to 24¿at.¿%. The layers have been fully characterized with respect to their atomic composition and the structure of the Si precipitates. Linear refractive index and extinction coefficient have been determined in the whole visible range, enabling to estimate the optical bandgap as a function of the Si nanocrystal size. Nonlinear optical properties have been evaluated by the z-scan technique for two different excitations: at 0.80¿eV in the nanosecond regime and at 1.50¿eV in the femtosecond regime. Under nanosecond excitation conditions, the nonlinear process is ruled by thermal effects, showing large values of both nonlinear refractive index (n2 ~ ¿10¿8¿cm2/W) and nonlinear absorption coefficient (ß ~ 10¿6¿cm/W). Under femtosecond excitation conditions, a smaller nonlinear refractive index is found (n2 ~ 10¿12¿cm2/W), typical of nonlinearities arising from electronic response. The contribution per nanocrystal to the electronic third-order nonlinear susceptibility increases as the size of the Si nanoparticles is reduced, due to the appearance of electronic transitions between discrete levels induced by quantum confinement.
Resumo:
The ability of a soil to keep its structure under the erosive action of water is usually high in natural conditions and decreases under frequent and intensive cultivation. The effect of five tillage systems (NT = no-till; CP = chisel plowing and one secondary disking; CT = primary and two secondary distings; CTb = CT with crop residue burning; and CTr = CT with removal of crop residues from the field), combined with five nutrient sources (C = control, no nutrient application; MF = mineral fertilizers according to technical recommendations for each crop; PL = 5 Mg ha-1 y-1 fresh matter of poultry litter; CM = 60 m³ ha-1 y-1 slurry cattle manure; and SM = 40 m³ ha-1 y-1 slurry swine manure) on wet-aggregate stability was determined after nine years (four sampled soil layers) and on five sampling dates in the 10th year (two sampled soil layers) of the experiment. The size distribution of the air-dried aggregates was strongly affected by soil bulk density, and greater values of geometric mean diameter (GMD AD) found in some soil tillage or layer may be partly due to the higher compaction degree. After nine years, the GMD AD on the surface was greater in NT and CP compared to conventional tillage systems (CT, CTb and CTr), due to the higher organic matter content, as well as less soil mobilization. Aggregate stability in water, on the other hand, was affected by the low variation in previous gravimetric moisture of aggregates, which contributed to a high coefficient of variation of this attribute. The geometric mean diameter of water-stable aggregates (GMD WS) was highest in the 0.00-0.05 m layer in the NT system, in the layers 0.05-0.10 and 0.12-0.17 m in the CT, and values were intermediate in CP. The stability index (SI) in the surface layers was greater in treatments where crop residues were kept in the field (NT, CP and CT), which is associated with soil organic matter content. No differences were found in the layer 0.27-0.32 m. The effect of nutrient sources on GMD AD and GMD WS was small and did not affect SI.
Resumo:
Low-cost tin oxide gas sensors are inherently nonspecific. In addition, they have several undesirable characteristics such as slow response, nonlinearities, and long-term drifts. This paper shows that the combination of a gas-sensor array together with self-organizing maps (SOM's) permit success in gas classification problems. The system is able to determine the gas present in an atmosphere with error rates lower than 3%. Correction of the sensor's drift with an adaptive SOM has also been investigated
Resumo:
Gas sensing systems based on low-cost chemical sensor arrays are gaining interest for the analysis of multicomponent gas mixtures. These sensors show different problems, e.g., nonlinearities and slow time-response, which can be partially solved by digital signal processing. Our approach is based on building a nonlinear inverse dynamic system. Results for different identification techniques, including artificial neural networks and Wiener series, are compared in terms of measurement accuracy.
Resumo:
We study the induced aggregation operators. The analysis begins with a revision of some basic concepts such as the induced ordered weighted averaging (IOWA) operator and the induced ordered weighted geometric (IOWG) operator. We then analyze the problem of decision making with Dempster-Shafer theory of evidence. We suggest the use of induced aggregation operators in decision making with Dempster-Shafer theory. We focus on the aggregation step and examine some of its main properties, including the distinction between descending and ascending orders and different families of induced operators. Finally, we present an illustrative example in which the results obtained using different types of aggregation operators can be seen.
Resumo:
[cat] En el domini dels jocs bilaterals d’assignació, es presenta una axiomàtica del nucleolus com l´unica solució que compleix les propietats de consistència respecte del joc derivat definit per Owen (1992) i monotonia de les queixes dels sectors respecte de la seva cardinalitat. Com a conseqüència obtenim una caracterització geomètrica del nucleolus mitjançant una propietat de bisecció més forta que la que satisfan els punts del kernel (Maschler et al, 1979).
Resumo:
[spa] Se presenta el operador OWA generalizado inducido (IGOWA). Es un nuevo operador de agregación que generaliza al operador OWA a través de utilizar las principales características de dos operadores muy conocidos como son el operador OWA generalizado y el operador OWA inducido. Entonces, este operador utiliza medias generalizadas y variables de ordenación inducidas en el proceso de reordenación. Con esta formulación, se obtiene una amplia gama de operadores de agregación que incluye a todos los casos particulares de los operadores IOWA y GOWA, y otros casos particulares. A continuación, se realiza una generalización mayor al operador IGOWA a través de utilizar medias cuasi-aritméticas. Finalmente, también se desarrolla un ejemplo numérico del nuevo modelo en un problema de toma de decisiones financieras.
Resumo:
The influence of relief forms has been studied by several authors and explains the variability in the soil attributes of a landscape. Soil physical attributes depend on relief forms, and their assessment is important in mechanized agricultural systems, such as of sugarcane. This study aimed to characterize the spatial variability in the physical soil attributes and their relationship to the hillslope curvatures in an Alfisol developed from sandstone and growing sugarcane. Grids of 100 x 100 m were delimited in a convex and a concave area. The grids had a regular spacing of 10 x 10 m, and the crossing points of this spacing determined a total of 121 georeferenced sampling points. Samples were collected to determine the physical attributes related to soil aggregates, porosity, bulk density, resistance to penetration and moisture within the 0-0.2 and 0.2-0.4 m depth. Statistical analyses, geostatistics and Student's t-tests were performed with the means of the areas. All attributes, except aggregates > 2 mm in the 0-0.2 m depth and macroporosity at both depths, showed significant differences between the hillslope curvatures. The convex area showed the highest values of the mean weighted diameter, mean geometric diameter, aggregates > 2 mm, 1-2 mm aggregates, total porosity and moisture and lower values of bulk density and resistance to penetration in both depth compared to the concave area. The number of soil attributes with greater spatial variability was higher in the concave area.
Resumo:
Obtaining information about soil properties under different agricultural uses to plan soil management is very important with a view to sustainability in the different agricultural systems. The aim of this study was to evaluate changes in certain indicators of the physical quality of a dystrophic Red Latosol (Oxisol) under different agricultural uses. The study was conducted in an agricultural area located in northern Paraná State. Dystrophic Red Latosol samples were taken from four sites featuring different types of land use typical of the region: pasture of Brachiaria decumbens (P); sugarcane (CN); annual crops under no-tillage (CAPD); and native forest (permanent conservation area) (control (C)). For each land use, 20 completely randomized, disturbed and undisturbed soil samples were collected from the 0-20 cm soil layer, to determine soil texture, volume of water-dispersible clay, soil flocculation (FD), particle density, quantity of organic matter (OM), soil bulk density (Ds), soil macroporosity (Ma) and microporosity (Mi), total soil porosity (TSP), mean geometric diameter of soil aggregates (MGD), and penetration resistance (PR). The results showed differences in OM, FD, MGD, Ds, PR, and Ma between the control (soil under forest) and the areas used for agriculture (P, CN and CAPD). The soils of the lowest physical quality were those used for CN and CAPD, although only the former presented a Ma level very close to that representing unfavorable conditions for plant growth. For the purposes of this study, the physical properties studied were found to perform well as indicators of soil quality.
Resumo:
The As Pontes basin (12 km2), NW Iberian Peninsula, is bounded by a double restraining bend of a dextral strike-slip fault, which is related to the western onshore end of the Pyrenean belt. Surface and subsurface data obtained from intensive coal exploration and mining in the basin since the 1960s together with additional structural and stratigraphic sequence analysis allowed us to determine the geometric relationships between tectonic structures and stratigraphic markers. The small size of the basin and the large amount of quality data make the As Pontes basin a unique natural laboratory for improving our understanding of the origin and evolution of restraining bends. The double restraining bend is the end stage of the structural evolution of a compressive underlapping stepover, where the basin was formed. During the first stage (stepover stage), which began ca. 30 Ma ago (latest Rupelian) and lasted 3.4 My, two small isolated basins bounded by thrusts and normal faults were formed. For 1.3 My, the strike-slip faults, which defined the stepover, grew towards each other until joining and forming the double restraining bend, which bounds one large As Pontes basin (transition stage). The history of the basin was controlled by the activity of the double restraining bend for a further 3.4 My (restraining bend stage) and ended in mid-Aquitanian times (ca. 22 Ma).
Resumo:
Rock slope instabilities such as rock slides, rock avalanche or deep-seated gravitational slope deformations are widespread in Alpine valleys. These phenomena represent at the same time a main factor that control the mountain belts erosion and also a significant natural hazard that creates important losses to the mountain communities. However, the potential geometrical and dynamic connections linking outcrop and slope-scale instabilities are often unknown. A more detailed definition of the potential links will be essential to improve the comprehension of the destabilization processes and to dispose of a more complete hazard characterization of the rock instabilities at different spatial scales. In order to propose an integrated approach in the study of the rock slope instabilities, three main themes were analysed in this PhD thesis: (1) the inventory and the spatial distribution of rock slope deformations at regional scale and their influence on the landscape evolution, (2) the influence of brittle and ductile tectonic structures on rock slope instabilities development and (3) the characterization of hazard posed by potential rock slope instabilities through the development of conceptual instability models. To prose and integrated approach for the analyses of these topics, several techniques were adopted. In particular, high resolution digital elevation models revealed to be fundamental tools that were employed during the different stages of the rock slope instability assessment. A special attention was spent in the application of digital elevation model for detailed geometrical modelling of past and potential instabilities and for the rock slope monitoring at different spatial scales. Detailed field analyses and numerical models were performed to complete and verify the remote sensing approach. In the first part of this thesis, large slope instabilities in Rhone valley (Switzerland) were mapped in order to dispose of a first overview of tectonic and climatic factors influencing their distribution and their characteristics. Our analyses demonstrate the key influence of neotectonic activity and the glacial conditioning on the spatial distribution of the rock slope deformations. Besides, the volumes of rock instabilities identified along the main Rhone valley, were then used to propose the first estimate of the postglacial denudation and filling of the Rhone valley associated to large gravitational movements. In the second part of the thesis, detailed structural analyses of the Frank slide and the Sierre rock avalanche were performed to characterize the influence of brittle and ductile tectonic structures on the geometry and on the failure mechanism of large instabilities. Our observations indicated that the geometric characteristics and the variation of the rock mass quality associated to ductile tectonic structures, that are often ignored landslide study, represent important factors that can drastically influence the extension and the failure mechanism of rock slope instabilities. In the last part of the thesis, the failure mechanisms and the hazard associated to five potential instabilities were analysed in detail. These case studies clearly highlighted the importance to incorporate different analyses and monitoring techniques to dispose of reliable and hazard scenarios. This information associated to the development of a conceptual instability model represents the primary data for an integrated risk management of rock slope instabilities. - Les mouvements de versant tels que les chutes de blocs, les éboulements ou encore les phénomènes plus lents comme les déformations gravitaires profondes de versant représentent des manifestations courantes en régions montagneuses. Les mouvements de versant sont à la fois un des facteurs principaux contrôlant la destruction progressive des chaines orogéniques mais aussi un danger naturel concret qui peut provoquer des dommages importants. Pourtant, les phénomènes gravitaires sont rarement analysés dans leur globalité et les rapports géométriques et mécaniques qui lient les instabilités à l'échelle du versant aux instabilités locales restent encore mal définis. Une meilleure caractérisation de ces liens pourrait pourtant représenter un apport substantiel dans la compréhension des processus de déstabilisation des versants et améliorer la caractérisation des dangers gravitaires à toutes les échelles spatiales. Dans le but de proposer un approche plus globale à la problématique des mouvements gravitaires, ce travail de thèse propose trois axes de recherche principaux: (1) l'inventaire et l'analyse de la distribution spatiale des grandes instabilités rocheuses à l'échelle régionale, (2) l'analyse des structures tectoniques cassantes et ductiles en relation avec les mécanismes de rupture des grandes instabilités rocheuses et (3) la caractérisation des aléas rocheux par une approche multidisciplinaire visant à développer un modèle conceptuel de l'instabilité et une meilleure appréciation du danger . Pour analyser les différentes problématiques traitées dans cette thèse, différentes techniques ont été utilisées. En particulier, le modèle numérique de terrain s'est révélé être un outil indispensable pour la majorité des analyses effectuées, en partant de l'identification de l'instabilité jusqu'au suivi des mouvements. Les analyses de terrain et des modélisations numériques ont ensuite permis de compléter les informations issues du modèle numérique de terrain. Dans la première partie de cette thèse, les mouvements gravitaires rocheux dans la vallée du Rhône (Suisse) ont été cartographiés pour étudier leur répartition en fonction des variables géologiques et morphologiques régionales. En particulier, les analyses ont mis en évidence l'influence de l'activité néotectonique et des phases glaciaires sur la distribution des zones à forte densité d'instabilités rocheuses. Les volumes des instabilités rocheuses identifiées le long de la vallée principale ont été ensuite utilisés pour estimer le taux de dénudations postglaciaire et le remplissage de la vallée du Rhône lié aux grands mouvements gravitaires. Dans la deuxième partie, l'étude de l'agencement structural des avalanches rocheuses de Sierre (Suisse) et de Frank (Canada) a permis de mieux caractériser l'influence passive des structures tectoniques sur la géométrie des instabilités. En particulier, les structures issues d'une tectonique ductile, souvent ignorées dans l'étude des instabilités gravitaires, ont été identifiées comme des structures très importantes qui contrôlent les mécanismes de rupture des instabilités à différentes échelles. Dans la dernière partie de la thèse, cinq instabilités rocheuses différentes ont été étudiées par une approche multidisciplinaire visant à mieux caractériser l'aléa et à développer un modèle conceptuel trois dimensionnel de ces instabilités. A l'aide de ces analyses on a pu mettre en évidence la nécessité d'incorporer différentes techniques d'analyses et de surveillance pour une gestion plus objective du risque associée aux grandes instabilités rocheuses.
Resumo:
Quantitative approaches in ceramology are gaining ground in excavation reports, archaeological publications and thematic studies. Hence, a wide variety of methods are being used depending on the researchers' theoretical premise, the type of material which is examined, the context of discovery and the questions that are addressed. The round table that took place in Athens on November 2008 was intended to offer the participants the opportunity to present a selection of case studies on the basis of which methodological approaches were discussed. The aim was to define a set of guidelines for quantification that would prove to be of use to all researchers. Contents: 1) Introduction (Samuel Verdan); 2) Isthmia and beyond. How can quantification help the analysis of EIA sanctuary deposits? (Catherine Morgan); 3) Approaching aspects of cult practice and ethnicity in Early Iron Age Ephesos using quantitative analysis of a Protogeometric deposit from the Artemision (Michael Kerschner); 4) Development of a ceramic cultic assemblage: Analyzing pottery from Late Helladic IIIC through Late Geometric Kalapodi (Ivonne Kaiser, Laura-Concetta Rizzotto, Sara Strack); 5) 'Erfahrungsbericht' of application of different quantitative methods at Kalapodi (Sara Strack); 6) The Early Iron Age sanctuary at Olympia: counting sherds from the Pelopion excavations (1987-1996) (Birgitta Eder); 7) L'aire du pilier des Rhodiens à Delphes: Essai de quantification du mobilier (Jean-Marc Luce); 8) A new approach in ceramic statistical analyses: Pit 13 on Xeropolis at Lefkandi (David A. Mitchell, Irene S. Lemos); 9) Households and workshops at Early Iron Age Oropos: A quantitative approach of the fine, wheel-made pottery (Vicky Vlachou); 10) Counting sherds at Sindos: Pottery consumption and construction of identities in the Iron Age (Stefanos Gimatzidis); 11) Analyse quantitative du mobilier céramique des fouilles de Xombourgo à Ténos et le cas des supports de caisson (Jean-Sébastien Gros); 12) Defining a typology of pottery from Gortyn: The material from a pottery workshop pit, (Emanuela Santaniello); 13) Quantification of ceramics from Early Iron Age tombs (Antonis Kotsonas); 14) Quantitative analysis of the pottery from the Early Iron Age necropolis of Tsikalario on Naxos (Xenia Charalambidou); 15) Finding the Early Iron Age in field survey: Two case studies from Boeotia and Magnesia (Vladimir Stissi); 16) Pottery quantification: Some guidelines (Samuel Verdan)
Resumo:
Introduction: Several methods have already been proposed to improve the mobility of reversed prostheses (lateral or inferior displacement, increase of the glenosphere size). However, the effect of these design changes have only been evaluated on the maximal range of motion and were not related to activities of daily living (ADL). Our aim was thus to measure the effect of these design changes and to relate it to 4 typical ADL. Methods: CT data were used to reconstruct a accurate geometric model of the scapula and humerus. The Aequalis reversed prosthesis (Tornier) was used. The mobility of a healthy shoulder was compared to the mobility of 4 different reversed designs: 36 and 42 mm glenospheres diameters, inferior (4 mm) and lateral (3.2 mm) glenospheres displacements. The complete mobility map of the prosthesis was compared to kinematics measurement on healthy subjects for 4 ADL: 1) hand to contra lateral shoulder, 2) hand to mouth, 3) combing hair, 4) hand to back pocket. The results are presented as percentage of the allowed movement of the prosthestic shouder relative to the healthy shoulder, considered as the control group. Results: None of the tested designs allowed to recover a full mobility. The differences of allowed range of motion among each prosthetic designs appeared mainly in two of the 4 movements: hand to back pocket and hand to contra lateral shoulder. For the hand to back pocket, the 36 had the lowest mobility range, particularly for the last third of the movement. The 42 appeared to be a good compromise for all ADL activities. Conclusion: Reverse shoulder prostheses does not allow to recover a full range of motion compared to healthy shoulders, even for ADL. The present study allowed to obtain a complete 3D mobility map for several glenosphere positions and sizes, and to relate it to typical ADL. We mainly observed an improved mobility with inferior displacement and increased glenosphere size. We would suggest to use larger glenosphere, whenever it is possible.
Resumo:
Considering that the soil aggregation reflects the interaction of chemical, physical and biological soil factors, the aim of this study was evaluate alterations in aggregation, in an Oxisol under no-tillage (NT) and conventional tillage (CT), since over 20 years, using as reference a native forest soil in natural state. After analysis of the soil profile (cultural profile) in areas under forest management, samples were collected from the layers 0-5, 5-10, 10-20 and 20-40 cm, with six repetitions. These samples were analyzed for the aggregate stability index (ASI), mean weighted diameter (MWD), mean geometric diameter (MGD) in the classes > 8, 8-4, 4-2, 2-1, 1-0.5, 0.5-0.25, and < 0.25 mm, and for physical properties (soil texture, water dispersible clay (WDC), flocculation index (FI) and bulk density (Bd)) and chemical properties (total organic carbon - COT, total nitrogen - N, exchangeable calcium - Ca2+, and pH). The results indicated that more intense soil preparation (M < NT < PC) resulted in a decrease in soil stability, confirmed by all stability indicators analyzed: MWD, MGD, ASI, aggregate class distribution, WDC and FI, indicating the validity of these indicators in aggregation analyses of the studied soil.
Resumo:
We study steady-state correlation functions of nonlinear stochastic processes driven by external colored noise. We present a methodology that provides explicit expressions of correlation functions approximating simultaneously short- and long-time regimes. The non-Markov nature is reduced to an effective Markovian formulation, and the nonlinearities are treated systematically by means of double expansions in high and low frequencies. We also derive some exact expressions for the coefficients of these expansions for arbitrary noise by means of a generalization of projection-operator techniques.