990 resultados para Geology|Paleontology|Geochemistry
Resumo:
Sedjrrlents deposited in the Late Quaternary marine sUbrnergences that follov'ted the deglaciation of Ontario} Quebec., and 6ritlst-1 Columbia often contaln an abundant nlarlne invertebrate macrofauna. The rnacrofauna~ dotYllnated by aragonitic pelecypods} is fully preserved In their original mineralogy and cherrlistry 8S deternl1ned by x-ray dlffractlon., scannlng electron tl-,lcroscoDY., trace and r1l1 nor elet11ent analyses and stable isotopes. Ttle trace elernent and stable isotope geochen-Ilstry of chernlcal1y unaltered aragorlitlc molluscs can be used to determine paleoter1-lperatures and paleosallnltles." HO\Never} corrections need to be tllade \fvtlen deterrTIlnlng oxygen-isotope paleotenlperi:ttures due to the lnfluence of isotopically 11gtlt glaciol rneltv-laters and reduced sal1nltles. Ttle eastern Laurentide Ice Sheet probably had an o:~ygen lS0tOP1C composition as low as -8e) 0/00 (Sr1[IW). In additl0fl} corrections need to be rnade to the carbonlsotope values, before salinity deterrnlnatlons are t11ade., due to the reJjuctlon of the terrestrial carbon bl0rnass during glac1al maxlrna. Using geochernlcal data frot11 537 marlne n-'8crolnvertebrates frorTI 72 localities in soutt-,easter Ontarl0 and southern Quebec, it tras been deterrnined that the Late Quaternary Char1lplaln Sea \N6S density stratified along salinity and temperatlJre gradients. The deep-\h/aters of tt-,e Charnplaln Sea tlad salinities that ranged frorn 31 to 36 ppt} and terrlperatures of 00 to 5°C. Conversely.. the st1alloy./-\f*later regirrle of ttle Ctlarnplaln Sea tlad sal1nltles that ranged fron-, 24 to 33 ppt} Y.tltt1 terrlperatures ranglng from 5° to 15°C. Tr,8 rrlajorl rnlnor1 and trace e1et1-,ent geochernlcal analysls of 155 marine lnvertebrates frorn 4 10C611t1es of tt-,e Late Quaternary Ft. Langley Forrnatlon and Capl1ano Sedlments;. souttl\Nestern Brltlsh Columblal suggest l t~lat the 'waters of the o-,arlne lnundation that fol1o....ved the retreating Cordl11eran Ice Sheet had sal1nltles ranglng frorn 32 to 3f. DPt.
Resumo:
Core samples of postglacial sediments and sediment surface samples from Shepherd Lake on the Bruce Peninsula, Harts Lake on the Canadian Shield, and two cores from Georgian Bay (core P-l in the western deep part and core P-7 in the eastern shallow part) have been analyzed for pH, grain size distribution, water content, bulk density, loss on ignition at 4500C and 11000 C, major oxides (Si02 ,A1203,!FeO,MgO,CaO, Na20,K20,Ti02 ,MnO and P205) and trace elements (Ba,Zr,Sr,y,S, Zn,Cu,Ni,Ce and Rb). The sediment in Georgian Bay are generally fine grained (fine silt to very fine silty clay) and the grain size decreases from the Canadian Shield (core p-7) towards the Bruce Peninsula (core P-l) along the assumed direction of sediment transport. This trend coincides with a decrease in sorting coefficient and an increase in roundness. Other physical characteristics, such as water content, bulk density and loss on ignition are positively correlated with the composition of sediments and their compaction, as well as with the energy of the depositional environment. Analyses of sediment surface samples from Shepherd Lake and Harts Lake indicate the influence of bedrock and surficial deposits in the watershed on pH condition that is also influenced by the organic matter content and probably I ! I man's activities. Organic matter content increases significantly in the surface sediment in these small lakes as a result of either natural eutrophication or anthropogenic organic loading. The extremely high organic matter content in Shepherd Lake sediment indicates rapid natural eutrophication in this closed basin and high biological productivity during postglacial time, probably due to high nutrient levels and shallow depth. The chemical composition of the Canadian Shield bedrock is positively correlated with the chemical characteristics of predominantly inorganic lake sediments that were derived from the Shield rocks by glacial abrasion and by postglacial weathering and erosion of both bedrock and surficial deposits. High correlation coefficients were found between organic matter in lake sediments and major oxides (Si02,AI203,.~FeO, MgO,CaO,K20 and MnO) , as well as some trace elements (Ba,Y, S,Zn,Cu,Ni and Rb). The chemical composition of sediments in Harts Lake and core P-7 in Georgian Bay on the Canadian Shield differs from the chemistry of sediments in Shepherd Lake and core P-l in Georgian Bay on the Bruce Peninsula. The difference between cores P-l and P-7 is indicated by values of Si02 , AI203 ,:LFeo,Mgo,CaO,Ba,Zr,Sr,y and S, and also by the organic matter content. This study indicates that the processes of sediment transport, depositional environment, weathering of the rocks and surficial deposits in the watershed, as well as chemical composition of source rocks all affect the chemical characteristics of lake sediments. The stratigraphic changes and variations in lake sediment chemistry with regard to major oxides, trace elements, and organic matter content are probably related to the history of glacial and postglacial lake stages of the Georgian Bay Region and, therefore, the geochemical data can make a useful contribution to a better understanding of the Late-Quaternary history of the Great Lakes.
Resumo:
Owing to the fact that low-Mg calcite fossil shells are so important in paleoceanographic research, 249 brachiopod, cement and matrix specimens from two neighboring localities (Jemez Springs and Battleship Rock), of the Upper Pennsylvanian Madera Formation were analyzed. Of which, about 86% of the Madera brachiopods are preserved in their pristine mineralogy, microstructure and geochemistry. Cement and matrix samples, in contrast, have been subjected to complete but variable post-deposition~1 alteration. It is confirmed that the stable isotope data of brachiopods are much better than that of matrix material in defining depositional parameters. Because there is no uniform or constant relationship between the two data bases (e.g., from 0.1 to 3.0%0 for 0180 and from 0.2 to 6.7%0 for 013C in this study), it is not possible to make corrections for the matrix data. Regarding the two stratigraphic sections, elemental and petrographic analyses suggest that Jemez Springs is closer to Penasco Uplift than Battleship Rock. Seawater at Jemez Springs is more aerobic, and the water chemistry is more influenced by continental sources than that at Battleship Rock. In addition, there is a relatively stronger dolomitization in the mid-section of the Battleship Rock. Results further suggest that no significant biogenic fractionation or vital effects occurred during their shell secretion, suggesting that the Madera brachiopods incorporated oxygen and carbon isotopes in equilibrium with the ambient seawater. This conclusion is not only drawn from the temporal and spatial analyses, but also supported by brachiopod inter-generic comparison (Composita and Neospirifer) and statistical analysis ( t-test).
Resumo:
Trilobites ¥tere collected from Ordovician and Devonian formations of Ontario} New York} Ohio} Oklahoma} and Indiana. Diversity was generally low} but 19..?telllS and Ph..~tY>ps ¥tere the most abundant species from the Ordovician and Devonian} respectively. Recent marine arthropods ¥tere collected from the Atlantic shore of the middle Florida Keys} and from the Pacific and lagoonal waters at Cape Beale} B. C. Fresh-water arthropods were collected along the shore of the Severn River in northcentral Ontario. Cuticles ¥tere analyzed for major} minor and trace elements, 180 and 13C isotopes, as ¥tell as examined by scanning electron micr?scope to identify original and diagenetic fabrics. Examination of trilobite cuticles by scanning electron microscope revealed several microstructures consistent with those observed in Recent arthropods. Microstructures} such as setae and tegumental gland duct openings} in like sized Lim/IllS and Isoteline trilobites may indicate common ancestral origins for these organisms, or simply parallel cuticle evolutions. The dendritic microstructure, originally' thought to be a diagenetic indicator, was found in Recent specimens and therefore its presence in trilobites may be suggestive of the delicate nature of diagenesis in trilobites. The absence of other primary microstructures in trilobites may indicate alteration, taxonomic control} or that there is some inherent feature of S EM examination which may' not allow detection of some features} while others are apparently visit·le onl~1 under SH.·1. The region of the cuticle sampled for examination is also a major influence in detecting pristine microstructures, as not all areas of trilobite and Recent arthropod cuticles will have microstructures identifiable in a SEM study. Subtleties in the process of alteration, however} ma~·· leave pristine microstructures in cuticles that are partial~/ silicified or do 10m itized, and degree and type of alteration may vary stratigraphically and longitudinally within a unit. The presence of fused matrices, angular calcite rhombs, and pyrite in the cuticle are thought to be indicative of altered cuticles, although pyritization may not affect the entire cuticle. t-~atural processes in Recent arthropods, such as molting, lead to variations in cuticle chemistries, and are thought to reflect the area of concentration of the elements during calcification. The level of sodium in Recent arthropods was found to be higher than that in trilobites, but highly mobile when sUbjected to the actions of VY'€'athering. Less saline water produced lovy'€'r magnesium and higher calcium values in Recent specimens .. and metal variations in pristine Ordovician trilobite cuticle appears to follow the constraints outlined for Recent arthropods, of regulation due to the chemislry of the surrounding medium. In diagenetic analysis, sodium, strontium and magnesium proved most beneficial in separating altered from least altered trilobites. Using this criterion, specimens from shale show the least amount of geochemical alteration, and have an original mineralogy of 1.7 - 2.4 mole % MgC03 (8000 t(> 9500 ppm magnesium) for both /s>..?/e/11S lJA'i.riff!11S and PseIAit'11J17ites I..itmirpin..itl/~ and 2.8 - 3.3 mole % MgC03 (5000 to 7000 ppm magnesium) for Ph.i{).?PS This is Slightly lower than the mineralogy of Recent marine arthropods (4.43 - 12.1 mole % MgC03), and slightly higher than that of fresh-water crayfish (0.96 - 1.82 mole % MgC03). Geochemically pristine trilobites were also found to possess primary microstructures. Stable isotope values and trends support the assertion that marine-meteoriclburial fluids were responsible for the alteration observed in a number of the trilobite specimens. The results of this stUdy suggest that fossil material has to be evaluated separately along taxonomic and lithological lines to arrive at sensible diagenetic and e nvironmenta I interpretations.
Resumo:
The McElroy and Larder Lake assemblages, located in the southern Abitibi Greenstone Belt are two late Archean metavolcanic sequences having markedly contrasting physical characteristics arid are separated from one another by a regional fault. An assemblage is an informal term which describes stratified volcanic and/or sedimentary rock units built during a specific time period in a similar depositional or volcanic setting and are commonly bounded by faults, unconformities or intrusions. The petrology and petrogenesis of these assemblages have been investigated to determine if a genetic link exists between the two adjacent assemblages. The McElroy assemblage is homoclinal sequence of evolved massive and pillowed fl.ows, which except for the basal unit represents a progressively fractionated volcanic pile. From the base to the top of the assemblage the lithologies include Fe-tholeiitic, dendritic flows; komatiite basaltic, ultramafic flows; Mg-tholeiitic, leucogabbro; Mg-tholeiitic, massive flows and Fe-tholeiitic, pillowed flows. Massive flows range from coarse grained to aphanitic and are commonly plagioclase glomerophyric. The Larder Lake assemblage consists of komatiitic, Mg-rich and Fe-rich tholeiitic basalts, structurally disrupted by folds and faults. Tholeiitic rocks in the Larder Lake assemblage range from aphanitic to coarse grained massive and pillowed flows. Komatiitic flows contain both spinifex and massive textures. Geochemical variability within both assemblages is attributed to different petrogenetic histories. The lithologies of the McElroy assemblage were derived by partial melting of a primitive mantle source followed by various degrees of crystal fractionation. Partial melting of a primitive mantle source generated the ultramafic flows and possibly other flows in the assemblage. Fractionation of ultramafic flows may have also produced the more evolved McElroy lithologies. The highly evolved, basal, dendritic flow may represent the upper unit 3 of a missing volcanic pile in which continued magmatism generated the remaining McElroy lithologies. Alternatively, the dendritic flows may represent a primary lava derived from a low degree (10-15%) partial melt of a primitive mantle source which was followed by continued partial melting to generate the ultramafic flows. The Larder Lake lithologies were derived by partial melting of a komatiitic source followed by gabbroic fractionation. The tectonic environment for both assemblages is interpreted to be an oceanic arc setting. The McElroy assemblage lavas were generated in a mature back arc setting whereas the Larder Lake lithologies were produced during the early stages of komatiitc crust subduction. This setting is consistent with previous models involving plate tectonic processes for the generation of other metavolcanic assemblages in the Abitibi Greenstone Belt.
Resumo:
The steeply dipping, isoclinally folded early Precambrian (Archean) Berry Creek Metavolcanic Complex comprises primary to resedimented pyroclastic, epiclastic and autoclastic deposits. Tephra erupted from central volcanic edifices was dumped by mass flow mechanisms into peripheral volcanosedimentary depressions. Sedimentation has been essentially contemporaneous with eruption and transport of tephra. The monolithic to heterolithic tuffaceous horizons are interpreted as subaerial to subaqueous pumice and ash flows, secondary debris flows, lahars, slump deposits and turbidites. Monolithic debris flows, derived from crumble breccia and dcme talus, formed during downslope collapse and subsequent gravity flowage. Heterolithic tuff, lahars and lava flow morphologies suggest at least temporary emergence of the edifice. Local collapse may have accompanied pyroclastic volcanism. The tephra, produced by hydromagmatic to magmatic eruptions, were rapidly transported, by primary and secondary mechanisms, to a shallow littoral to deep water subaqueous fan developed upon the subjacent mafic metavolcanic platform. Deposition resulted from traction, traction carpet, and suspension sedimentation from laminar to turbulent flows. Facies mapping revealed proximal (channel to overbank) to distal facies epiclastics (greywackes, argillite) intercalated with proximal vent to medial fan facies crystal rich ash flows, debris flows, bedded tuff and shallow water to deep water lava flows. Framework and matrix support debris flows exhibit a variety of subaqueous sedimentary structures, e.g., coarse tail grading, double grading, inverse to normal grading, graded stratified pebbly horizons, erosional channels. Pelitic to psammitic AE turbidites also contain primary stru~tures, e.g., flames, load casts, dewatering pipes. Despite low to intermediate pressure greenschist to amphibolite grade metamorphism and variably penetrative deformation, relicts of pumice fragments and shards were recognized as recrystallized quartzofeldspathic pseudomorphs. The mafic to felsic metavolcanics and metasediments contain blasts of hornblende, actinolite, garnet, pistacitic epidote, staurolite, albitic plagioclase, and rarely andalusite and cordierite. The mafic metavolcanics (Adams River Bay, Black River, Kenu Lake, Lobstick Bay, Snake Bay) display _holeiitic trends with komatiitic affinities. Chemical variations are consistent with high level fractionation of olivine, plagioclase, amphibole, and later magnetite from a parental komatiite. The intermediate to felsic (64-74% Si02) metavolcanics generally exhibit calc-alkaline trends. The compositional discontinuity, defined by major and trace element diversity, can be explained by a mechanism involving two different magma sources. Application of fractionation series models are inconsistent with the observed data. The tholeiitic basalts and basaltic andesites are probably derived by low pressure fractionation of a depleted (high degree of partial melting) mantle source. The depleted (low Y, Zr) calc-alkaline metavolcanics may be produced by partial melting of a geochemically evolved source, e.g., tonalitetrondhjemite, garnet amphibolite or hydrous basalt.
Resumo:
Marine palynology and benthic and planktonic foraminiferal geochemistry are combined to reveal long- and short-term (Milankovitch-scale) paleoceanographic changes across the upper half of the Olduvai Subchron (ca. 1.86--1.77 Ma, lower Pleistocene) in DSDP Hole 603C from the lower New Jersey continental rise. Planktonic foraminiferal Mg/Ca ratios reveal annual sea-surface temperatures between 14.5° and 25°C, whereas modern values vary between 16° and 20°e. Despite evidence of downslope transport in much of the studied interval, dinoflagellate cyst and acritarch assemblages appear to reflect fluctuating temperate to subtropical water masses. These assemblages comprise both neritic and oceanic species, and are marked by a transition upsection from warm conditions, dominated by Lingulodinium machaerophorum, Polysphaeridium zoharyi and Cymatiosphaera? invaginata, to cooler conditions dominated by Filisphaera filifera. Combining dinoflagellate cyst proxies with planktonic foraminiferal geochemistry allows downslope transport events to be recognized during glacial episodes, and events dominated by intensified bottom-water circulation during interglacial episodes. Sixtytwo in-situ dinoflagellate cyst and acritarch taxa were recorded including several not previously described.
Resumo:
Hebes Chasma is an 8 km deep, 126 by 314 km, isolated basin that is partially filled with interior layered deposits (ILD), massive deposits of water altered strata. By analyzing the ILD’s structure, stratigraphy and mineralogy, as well as the perimeter faults exposed in the plateau adjacent to the chasma, the evolution and depositional history of Hebes Chasma is interpreted. Three distinct ILD units were found and are informally referred to as the Lower, Upper and Late ILDs. These units have differing layer thicknesses, layer attitudes, mineralogies and erosional landforms. Based on observations of the plateau, wall morphology and slump blocks within the chasma’s interior, chasma evolution appears to be controlled by cross-faults that progressively detached sections of the wall. A scenario involving the loss of subsurface volume and ash fall events is proposed as the dominant setting throughout Hebes’ geologic history.
Resumo:
UANL
Resumo:
Rare earth elements have occupied an important role in marine geochemical research, particularly as used in the format of REE abundance patterns to describe the geochemical pathways in marine sedimentation and authigenesis. This study concentrates on the distribution pattern of Rare earth elements in the sediments, behavior of Eu and Ce with respect to their occurrence in multiple oxidation states. It also concentrate the depth wise variation of sediment REEs from near shore areas (30m) to deeper depths 200m) in the Arabian Sea. It includes the downcore variation of REEs and other trace elements in the sediment cores and a comparison between the REE distributions of Arabian Sea sediment with the sediments of Andaman Sea. The study gives a general introduction regarding the importance of RRE studies, its occurrence and abundance, electronic configuration, lanthanide contraction, oxidations states and REE supply to the ocean, seawater and sediments.
Resumo:
The present study is an attempt to address issues related to sediment properties like texture, mineralogy and geochemistry as well as water quality of two important rivers of central Kerala-the Periyar and the Chalakudy rivers. The main objectives of the study are to investigate the textural and mineralogical characteristics as well as transportation and depositional mechanisms of the sediments of Periyar and Chalakudy rivers, to find out the geochemical variability of organic carbon, phosphorus and certain major (Na,K,Ca and Mg) and minor/trace(Mn,Pb,Ni,Cr, and Zn) elements in the bulk sediments and mud fraction of these rivers, to evaluate the status of heavy metal pollution registered in the sediments of these rivers, to assess the physico-chemical characteristics and water quality of Periyar and Chalakudy rivers and to estimate the dissolved nutrient flux through the Periyar and Chalakudy rivers into the receiving coastal waters. The granulometric characteristics as well as statistical parameters of the sediments of Periyar and Chalakudy rivers depend on the flow pattern controlled by the gradient of the terrain. Compared to Periyar, fluctuations in the dispersal of particles are more in Chalakudy river. In Periyar river, the P and Fe in bulk sediments show a positive correlation with C-org, while in Chalakudy river, both the elements are related to THM concentration. In general, C-org, Fe and P Shows an increasing trend downstream. In Periyar river, the P and Fe in bulk sediments show a positive correlation with C-org, while in Chalakudy river, both the elements are related to THM concentration. Among these two rivers, the pollution of water is several fold higher in Periyar river due to influx due to influx of considerable quantity of liquid and solid wastes of industrial/domestic/urban origin. Nutrient analysis reveals 2-3 times increase in N and P during monsoon season whereas SiO2-Si shows a decreasing trend.