951 resultados para Genetic selection
Resumo:
A formalism for describing the dynamics of Genetic Algorithms (GAs) using method s from statistical mechanics is applied to the problem of generalization in a perceptron with binary weights. The dynamics are solved for the case where a new batch of training patterns is presented to each population member each generation, which considerably simplifies the calculation. The theory is shown to agree closely to simulations of a real GA averaged over many runs, accurately predicting the mean best solution found. For weak selection and large problem size the difference equations describing the dynamics can be expressed analytically and we find that the effects of noise due to the finite size of each training batch can be removed by increasing the population size appropriately. If this population resizing is used, one can deduce the most computationally efficient size of training batch each generation. For independent patterns this choice also gives the minimum total number of training patterns used. Although using independent patterns is a very inefficient use of training patterns in general, this work may also prove useful for determining the optimum batch size in the case where patterns are recycled.
Resumo:
A theoretical model is presented which describes selection in a genetic algorithm (GA) under a stochastic fitness measure and correctly accounts for finite population effects. Although this model describes a number of selection schemes, we only consider Boltzmann selection in detail here as results for this form of selection are particularly transparent when fitness is corrupted by additive Gaussian noise. Finite population effects are shown to be of fundamental importance in this case, as the noise has no effect in the infinite population limit. In the limit of weak selection we show how the effects of any Gaussian noise can be removed by increasing the population size appropriately. The theory is tested on two closely related problems: the one-max problem corrupted by Gaussian noise and generalization in a perceptron with binary weights. The averaged dynamics can be accurately modelled for both problems using a formalism which describes the dynamics of the GA using methods from statistical mechanics. The second problem is a simple example of a learning problem and by considering this problem we show how the accurate characterization of noise in the fitness evaluation may be relevant in machine learning. The training error (negative fitness) is the number of misclassified training examples in a batch and can be considered as a noisy version of the generalization error if an independent batch is used for each evaluation. The noise is due to the finite batch size and in the limit of large problem size and weak selection we show how the effect of this noise can be removed by increasing the population size. This allows the optimal batch size to be determined, which minimizes computation time as well as the total number of training examples required.
Resumo:
The problem of finding the optimal join ordering executing a query to a relational database management system is a combinatorial optimization problem, which makes deterministic exhaustive solution search unacceptable for queries with a great number of joined relations. In this work an adaptive genetic algorithm with dynamic population size is proposed for optimizing large join queries. The performance of the algorithm is compared with that of several classical non-deterministic optimization algorithms. Experiments have been performed optimizing several random queries against a randomly generated data dictionary. The proposed adaptive genetic algorithm with probabilistic selection operator outperforms in a number of test runs the canonical genetic algorithm with Elitist selection as well as two common random search strategies and proves to be a viable alternative to existing non-deterministic optimization approaches.
Resumo:
In this paper, a novel approach for character recognition has been presented with the help of genetic operators which have evolved from biological genetics and help us to achieve highly accurate results. A genetic algorithm approach has been described in which the biological haploid chromosomes have been implemented using a single row bit pattern of 315 values which have been operated upon by various genetic operators. A set of characters are taken as an initial population from which various new generations of characters are generated with the help of selection, crossover and mutation. Variations of population of characters are evolved from which the fittest solution is found by subjecting the various populations to a new fitness function developed. The methodology works and reduces the dissimilarity coefficient found by the fitness function between the character to be recognized and members of the populations and on reaching threshold limit of the error found from dissimilarity, it recognizes the character. As the new population is being generated from the older population, traits are passed on from one generation to another. We present a methodology with the help of which we are able to achieve highly efficient character recognition.
Resumo:
The hepatitis C virus (HCV) is able to persist as a chronic infection, which can lead to cirrhosis and liver cancer. There is evidence that clearance of HCV is linked to strong responses by CD8 cytotoxic T lymphocytes (CTLs), suggesting that eliciting CTL responses against HCV through an epitope-based vaccine could prove an effective means of immunization. However, HCV genomic plasticity as well as the polymorphisms of HLA I molecules restricting CD8 T-cell responses challenges the selection of epitopes for a widely protective vaccine. Here, we devised an approach to overcome these limitations. From available databases, we first collected a set of 245 HCV-specific CD8 T-cell epitopes, all known to be targeted in the course of a natural infection in humans. After a sequence variability analysis, we next identified 17 highly invariant epitopes. Subsequently, we predicted the epitope HLA I binding profiles that determine their potential presentation and recognition. Finally, using the relevant HLA I-genetic frequencies, we identified various epitope subsets encompassing 6 conserved HCV-specific CTL epitopes each predicted to elicit an effective T-cell response in any individual regardless of their HLA I background. We implemented this epitope selection approach for free public use at the EPISOPT web server. © 2013 Magdalena Molero-Abraham et al.
Resumo:
The profitability of momentum portfolios in the equity markets is derived from the continuation of stock returns over medium time horizons. The empirical evidence of momentum, however, is significantly different across markets around the world. The purpose of this dissertation is to: (1) help global investors determine the optimal selection and holding periods for momentum portfolios, (2) evaluate the profitability of the optimized momentum portfolios in different time periods and market states, (3) assess the investment strategy profits after considering transaction costs, and (4) interpret momentum returns within the framework of prior studies on investors’ behavior. Improving on the traditional practice of selecting arbitrary selection and holding periods, a genetic algorithm (GA) is employed. The GA performs a thorough and structured search to capture the return continuations and reversals patterns of momentum portfolios. Three portfolio formation methods are used: price momentum, earnings momentum, and earnings and price momentum and a non-linear optimization procedure (GA). The focus is on common equity of the U.S. and a select number of countries, including Australia, France, Germany, Japan, the Netherlands, Sweden, Switzerland and the United Kingdom. The findings suggest that the evolutionary algorithm increases the annualized profits of the U.S. momentum portfolios. However, the difference in mean returns is statistically significant only in certain cases. In addition, after considering transaction costs, both price and earnings and price momentum portfolios do not appear to generate abnormal returns. Positive risk-adjusted returns net of trading costs are documented solely during “up” markets for a portfolio long in prior winners only. The results on the international momentum effects indicate that the GA improves the momentum returns by 2 to 5% on an annual basis. In addition, the relation between momentum returns and exchange rate appreciation/depreciation is examined. The currency appreciation does not appear to influence significantly momentum profits. Further, the influence of the market state on momentum returns is not uniform across the countries considered. The implications of the above findings are discussed with a focus on the practical aspects of momentum investing, both in the U.S. and globally.
Resumo:
The profitability of momentum portfolios in the equity markets is derived from the continuation of stock returns over medium time horizons. The empirical evidence of momentum, however, is significantly different across markets around the world. The purpose of this dissertation is to: 1) help global investors determine the optimal selection and holding periods for momentum portfolios, 2) evaluate the profitability of the optimized momentum portfolios in different time periods and market states, 3) assess the investment strategy profits after considering transaction costs, and 4) interpret momentum returns within the framework of prior studies on investors’ behavior. Improving on the traditional practice of selecting arbitrary selection and holding periods, a genetic algorithm (GA) is employed. The GA performs a thorough and structured search to capture the return continuations and reversals patterns of momentum portfolios. Three portfolio formation methods are used: price momentum, earnings momentum, and earnings and price momentum and a non-linear optimization procedure (GA). The focus is on common equity of the U.S. and a select number of countries, including Australia, France, Germany, Japan, the Netherlands, Sweden, Switzerland and the United Kingdom. The findings suggest that the evolutionary algorithm increases the annualized profits of the U.S. momentum portfolios. However, the difference in mean returns is statistically significant only in certain cases. In addition, after considering transaction costs, both price and earnings and price momentum portfolios do not appear to generate abnormal returns. Positive risk-adjusted returns net of trading costs are documented solely during “up” markets for a portfolio long in prior winners only. The results on the international momentum effects indicate that the GA improves the momentum returns by 2 to 5% on an annual basis. In addition, the relation between momentum returns and exchange rate appreciation/depreciation is examined. The currency appreciation does not appear to influence significantly momentum profits. Further, the influence of the market state on momentum returns is not uniform across the countries considered. The implications of the above findings are discussed with a focus on the practical aspects of momentum investing, both in the U.S. and globally.
Resumo:
Piotr Omenzetter and Simon Hoell’s work within the Lloyd’s Register Foundation Centre for Safety and Reliability Engineering at the University of Aberdeen is supported by Lloyd’s Register Foundation. The Foundation helps to protect life and property by supporting engineering-related education, public engagement and the application of research.
Resumo:
The lactase enzyme allows lactose digestion in fresh milk. Its activity strongly decreases after the weaning phase in most humans, but persists at a high frequency in Europe and some nomadic populations. Two hypotheses are usually proposed to explain the particular distribution of the lactase persistence phenotype. The gene-culture coevolution hypothesis supposes a nutritional advantage of lactose digestion in pastoral populations. The calcium assimilation hypothesis suggests that carriers of the lactase persistence allele(s) (LCT*P) are favoured in high-latitude regions, where sunshine is insufficient to allow accurate vitamin-D synthesis. In this work, we test the validity of these two hypotheses on a large worldwide dataset of lactase persistence frequencies by using several complementary approaches. Methodology We first analyse the distribution of lactase persistence in various continents in relation to geographic variation, pastoralism levels, and the genetic patterns observed for other independent polymorphisms. Then we use computer simulations and a large database of archaeological dates for the introduction of domestication to explore the evolution of these frequencies in Europe according to different demographic scenarios and selection intensities. Conclusions Our results show that gene-culture coevolution is a likely hypothesis in Africa as high LCT*P frequencies are preferentially found in pastoral populations. In Europe, we show that population history played an important role in the diffusion of lactase persistence over the continent. Moreover, selection pressure on lactase persistence has been very high in the North-western part of the continent, by contrast to the South-eastern part where genetic drift alone can explain the observed frequencies. This selection pressure increasing with latitude is highly compatible with the calcium assimilation hypothesis while the gene-culture coevolution hypothesis cannot be ruled out if a positively selected lactase gene was carried at the front of the expansion wave during the Neolithic transition in Europe.
Resumo:
The selection of a set of requirements between all the requirements previously defined by customers is an important process, repeated at the beginning of each development step when an incremental or agile software development approach is adopted. The set of selected requirements will be developed during the actual iteration. This selection problem can be reformulated as a search problem, allowing its treatment with metaheuristic optimization techniques. This paper studies how to apply Ant Colony Optimization algorithms to select requirements. First, we describe this problem formally extending an earlier version of the problem, and introduce a method based on Ant Colony System to find a variety of efficient solutions. The performance achieved by the Ant Colony System is compared with that of Greedy Randomized Adaptive Search Procedure and Non-dominated Sorting Genetic Algorithm, by means of computational experiments carried out on two instances of the problem constructed from data provided by the experts.
Resumo:
Among bivalve species, the Pacific oyster, Crassostrea gigas, is the most economically important bivalve production over the world. Today, C. gigas is subject to an important production effort that leads to an intensive artificial selection. Larval stage is relatively unknown, specifically in a domestication context. Genetic consequence of artificial selection is still at a preliminary study. We aimed to tackle the consequence of inconscient domestication on the variance reproductive success focusing on larval stage, keystone of the life cycle. We studied two kinds of specific selective processes that common hatchery rearing practices exert : the effect of discarding the smallest larvae on genetic diversity and the artificial environment rearing effect via the temperature providing a contrast resembling wild versus hatchery conditions (20 and 26°C). In order to monitor the effect of the selection of fast growing larvae by sieving, growth variability and genetic diversity in a larval population descended from a factorial breeding was studied. We used a mixed-family approach to reduce potentially confounding environmental biais. The retrospective assignment of individuals to family groups has been performed using a three microsatellite markers set. Two different rearing were carried out in parallel. For three (replicates) 50-l tanks, the smallest larvae were progressively discarded by selective sieving, whereas for the three others no selective sieving was performed. The intensity of selective sieving was adjusted so as to discard 50% of the larvae over the whole rearing period in a progressive manner. As soon as the larvae reached the pediveliger stage, ready to settle larvae were sampled for genetic analysis. Regarding the artificial environment rearing effect via the temperature, we used a similar mixed-family approach. The progeny from a factorial breeding design was divided as follows: three (replicates) 50-l tanks were dedicaced to a rearing at 26°C versus 20°C for three others 50-l tanks. The whole size variability was preserved for this experiment. Individual growth measurements for larvae genetically identified have been performed at days 22 and 30 after fertilization for both conditions. In a same way, we collected individual measurements for genotyped juvenile oysters (80 days after fertilization). At a phenotypic scale, relative survival and settlement success for larvae with sieving were higher. Sieving appears as a time-saving process associated with a better relative survival ratio. But in the same time, our results confirm that a significant genetic variability exist for early developmental traits in the Pacific oyster. This is congruent with the results already obtained that investigated genetic variability and genetic correlations in early life-history traits of Crassostrea gigas. Discarding around 50% of the smallest larvae can lead to significant selection at the larval stage.
Resumo:
This paper combines the idea of a hierarchical distributed genetic algorithm with different inter-agent partnering strategies. Cascading clusters of sub-populations are built from bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence, higher-level sub-populations search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes amongst the agents on solution quality are examined for two multiple-choice optimisation problems. It is shown that partnering strategies that exploit problem-specific knowledge are superior and can counter inappropriate (sub-) fitness measurements.
Resumo:
This paper examines the use of a hierarchical coevolutionary genetic algorithm under different partnering strategies. Cascading clusters of sub-populations are built from the bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence higher-level sub-populations potentially search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes amongst the sub-populations on solution quality are examined for two constrained optimisation problems. We examine a number of recombination partnering strategies in the construction of higher-level individuals and a number of related schemes for evaluating sub-solutions. It is shown that partnering strategies that exploit problem-specific knowledge are superior and can counter inappropriate (sub-) fitness measurements.
Resumo:
Eucalyptus pellita demonstrated good growth and wood quality traits in this study, with young plantation grown timber being suitable for both solid and pulp wood products. All traits examined were under moderate levels of genetic control with little genotype by environment interaction when grown on two contrasting sites in Vietnam. Eucalyptus pellita currently has a significant role in reforestation in the tropics. Research to support expanded of use of this species is needed: particularly, research to better understand the genetic control of key traits will facilitate the development of genetically improved planting stock. This study aimed to provide estimates of the heritability of diameter at breast height over bark, wood basic density, Kraft pulp yield, modulus of elasticity and microfibril angle, and the genetic correlations among these traits, and understand the importance of genotype by environment interactions in Vietnam. Data for diameter and wood properties were collected from two 10-year-old, open-pollinated progeny trials of E. pellita in Vietnam that evaluated 104 families from six native range and three orchard sources. Wood properties were estimated from wood samples using near-infrared (NIR) spectroscopy. Data were analysed using mixed linear models to estimate genetic parameters (heritability, proportion of variance between seed sources and genetic correlations). Variation among the nine sources was small compared to additive variance. Narrow-sense heritability and genetic correlation estimates indicated that simultaneous improvements in most traits could be achieved from selection among and within families as the genetic correlations among traits were either favourable or close to zero. Type B genetic correlations approached one for all traits suggesting that genotype by environment interactions were of little importance. These results support a breeding strategy utilizing a single breeding population advanced by selecting the best individuals across all seed sources. Both growth and wood properties have been evaluated. Multi-trait selection for growth and wood property traits will lead to more productive populations of E. pellita both with improved productivity and improved timber and pulp properties.
Resumo:
Next-generation sequencing of complete genomes has given researchers unprecedented levels of information to study the multifaceted evolutionary changes that have shaped elite plant germplasm. In conjunction with population genetic analytical techniques and detailed online databases, we can more accurately capture the effects of domestication on entire biological pathways of agronomic importance. In this study, we explore the genetic diversity and signatures of selection in all predicted gene models of the storage starch synthesis pathway of Sorghum bicolor, utilizing a diversity panel containing lines categorized as either ‘Landraces’ or ‘Wild and Weedy’ genotypes. Amongst a total of 114 genes involved in starch synthesis, 71 had at least a single signal of purifying selection and 62 a signal of balancing selection and others a mix of both. This included key genes such as STARCH PHOSPHORYLASE 2 (SbPHO2, under balancing selection), PULLULANASE (SbPUL, under balancing selection) and ADP-glucose pyrophosphorylases (SHRUNKEN2, SbSH2 under purifying selection). Effectively, many genes within the primary starch synthesis pathway had a clear reduction in nucleotide diversity between the Landraces and wild and weedy lines indicating that the ancestral effects of domestication are still clearly identifiable. There was evidence of the positional rate variation within the well-characterized primary starch synthesis pathway of sorghum, particularly in the Landraces, whereby low evolutionary rates upstream and high rates downstream in the metabolic pathway were expected. This observation did not extend to the wild and weedy lines or the minor starch synthesis pathways.