960 resultados para Genetic Mechanisms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Editorial

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The clinical efficacy of anti-immunoglobulin E (IgE) therapy indicates a central role for IgE in perpetuation of allergic inflammatory diseases. Omalizumab is now uti- lized in treatment of a wide variety of allergic conditions including severe asthma, allergic rhinitis, atopic dermati- tis, food allergy and urticaria either alone or adjunct with other therapies such as steroid administration or allergen- specific immunotherapy [1, 2]. Current research activity is focused on the cellular and molecular mechanisms by which IgE influences the immunopathogenesis of allergic disease [3]. Increased knowledge of how IgE exerts its effects will underpin effective clinical use of anti-IgE treatment. In this issue Kerzel et al. [4] investigate the effects of altered antibo dy repertoire on the outcomes of an experimental model of allergic asthma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: IgE is the pivotal-specific effector molecule of allergic reactions yet it remains unclear whether the elevated production of IgE in atopic individuals is due to superantigen activation of B cell populations, increased antibody class switching to IgE or oligoclonal allergen-driven IgE responses. Objectives: To increase our understanding of the mechanisms driving IgE responses in allergic disease we examined immunoglobulin variable regions of IgE heavy chain transcripts from three patients with seasonal rhinitis due to grass pollen allergy. Methods: Variable domain of heavy chain-epsilon constant domain 1 cDNAs were amplified from peripheral blood using a two-step semi-nested PCR, cloned and sequenced. Results: The VH gene family usage in subject A was broadly based, but there were two clusters of sequences using genes VH 3-9 and 3-11 with unusually low levels of somatic mutations, 0-3%. Subject B repeatedly used VH 1-69 and subject C repeatedly used VH 1-02, 1-46 and 5a genes. Most clones were highly mutated being only 86-95% homologous to their germline VH gene counterparts and somatic mutations were more abundant at the complementarity determining rather than framework regions. Multiple sequence alignment revealed both repeated use of particular VH genes as well as clonal relatedness among clusters of IgE transcripts. Conclusion: In contrast to previous studies we observed no preferred VH gene common to IgE transcripts of the three subjects allergic to grass pollen. Moreover, most of the VH gene characteristics of the IgE transcripts were consistent with oligoclonal antigen-driven IgE responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been 10 years since the seminal paper by Morrison and colleagues reporting the association of alleles of the vitamin D receptor and bone density [1], a paper which arguably kick-started the study of osteoporosis genetics. Since that report there have been literally thousands of osteoporosis genetic studies published, and large numbers of genes have been reported to be associated with the condition [2]. Although some of these reported associations are undoubtedly true, this snow-storm of papers and abstracts has clouded the field to such a great extent that it is very difficult to be certain of the veracity of most genetic associations reported hereto. The field needs to take stock and reconsider the best way forward, taking into account the biology of skeletal development and technological and statistical advances in human genetics, before more effort and money is wasted on continuing a process in which the primary achievement could be said to be a massive paper mountain. I propose in this review that the primary reasons for the paucity of success in osteoporosis genetics has been: •the absence of a major gene effect on bone mineral density (BMD), the most commonly studied bone phenotype; •failure to consider issues such as genetic heterogeneity, gene–environment interaction, and gene–gene interaction; •small sample sizes and over-optimistic data interpretation; and •incomplete assessment of the genetic variation in candidate genes studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To replicate the possible genetic association between ankylosing spondylitis (AS) and TNFRSF1A. Methods: TNFRSF1A was re-sequenced in 48 individuals with AS to identify novel polymorphisms. Nine single nucleotide polymorphisms (SNPs) in TNFRSF1A and 5 SNPs in the neighbouring gene SCNN1A were genotyped in 1604 UK Caucasian individuals with AS and 1019 matched controls. An extended study was implemented using additional genotype data on 8 of these SNPs from 1400 historical controls from the 1958 British Birth Cohort. A meta-analysis of previously published results was also undertaken. Results: One novel variant in intron 6 was identified but no new coding variants. No definite associations were seen in the initial study but in the extended study there were weak associations with rs4149576 (p=0.04) and rs4149577 (p=0.007). In the metaanalysis consistent, somewhat stronger associations were seen with rs4149577 (p=0.002) and rs4149578 (p=0.006). Conclusions: These studies confirm the weak genetic associations between AS and TNFRSF1A. In view of the previously reported associations of TNFRSF1A with AS, in Caucasians and Chinese, and the biological plausibility of this candidate gene, replication of this finding in well powered studies is clearly indicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both ankylosing spondylitis (AS) and rheumatoid arthritis (RA) are common, highly heritable conditions, the pathogenesis of which are incompletely understood. Gene-mapping studies in both conditions have over the last couple of years made major breakthroughs in identifying the mechanisms by which these diseases occur. Considering RA, there is an over-representation of genes involved in TNF signalling and the NFκB pathway that have been shown to influence the disease risk. There is also considerable sharing of susceptibility genes between RA and other autoimmune diseases such as systemic lupus erythematosus, type 1 diabetes, autoimmune thyroid disease and celiac disease, with thus far little overlap with AS. In AS, genes involved in response to IL12/IL23, and in endoplasmic reticulum peptide presentation, have been identified, but a full genomewide association study has not yet been reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ankylosing spondylitis is a highly heritable, common rheumatic condition, primarily affecting the axial skeleton. The association with HLA-B27 has been demonstrated worldwide, and evidence for a role of HLA-B27 in disease comes from linkage and association studies in humans, and transgenic animal models. However, twin studies indicate that HLA-B27 contributes only 16% of the total genetic risk for disease. Furthermore, there is compelling evidence that non-B27 genes, both within and outwith the major histocompatability complex, are involved in disease aetiology. In this post-genomic era we have the tools to help elicit the genetic basis of disease. This review describes methods for genetic investigation of ankylosing spondylitis, and summarises the status of current research in this exciting area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose of Review Over the past 3 years, several new genes and gene deserts have been identified that are associated with ankylosing spondylitis (AS). The purpose of this review is to discuss the major findings of these studies, and the answers they provide and questions they raise about the pathogenesis of this common condition. Recent Findings: Five genes/genetic regions have now definitively been associated with AS [the major histocompatibility complex (MHC), IL23R, ERAP1, 2p15 and 21q22]. Strong evidence to support association with the disease has been demonstrated for the genes IL1R2, ANTXR2, TNFSF15, TNFR1 and a region on chromosome 16q including the gene TRADD. There is an overrepresentation of genes involved in Th17 lymphocyte differentiation/activation among genes associated with AS and the related diseases inflammatory bowel disease and psoriasis, pointing strongly to this pathway as playing a major causative role in the disease. Increasing information about differential association of HLA-B27 subtypes with disease suggests a hierarchy of strength of association of those alleles with AS, providing a useful test as to the validity of different potential mechanisms of association of HLA-B27 with AS. The mechanism underlying the association of the gene deserts, 2p15 and 21q22, suggests the involvement of noncoding RNA in AS etiopathogenesis. Summary: The increasing list of genes identified as being definitely involved in AS provides a useful platform for hypothesis-driven research in the field, providing a potential alternative route to determining the underlying mechanisms involved in the disease to research focusing on HLA-B27 alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While twin studies have previously demonstrated high heritability of susceptibility to ankylosing spondylitis (AS), it is only recently that the involvement of genetic factors in determining the severity of the disease has been demonstrated. The genes involved in determining the rate of ankylosis in AS are likely to be different from those involved in the underlying immunologic events, and represent important potential targets for treatment of AS. This article will describe the progress that has been made in the genetic epidemiology of AS, and in identifying the genes involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose of review Our understanding of the causation of the chondrocalcinosis and other disorders characterized by ectopic mineralization is rapidly increasing, and genetic studies have contributed substantially to recent major advances in the field. This review will discuss what is known about the genetics of chondrocalcinosis and what we have learned from genetic studies to date. Recent findings: Chondrocalcinosis is one of a family of conditions associated with ectopic mineralization. This family also includes disorders of mineralization of bone and spinal and other ligaments, and vascular calcification. There has been increasing evidence of the key role of transport and metabolism of inorganic pyrophosphate (PPi) in control of mineralization, and as the likely explanation for the association of a variety of genetic variants with chondrocalcinosis and ectopic mineralization elsewhere. This may be an overly simplistic view of this family of conditions, with recent evidence suggesting that, for example, ANKH variants may not all predispose to chondrocalcinosis by effects on PPi transport, but may also influence chondrocyte maturation. Summary: Understanding the control of the process of mineralization and its tissue specificity are important steps in the search for rational therapies for these conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystal deposition is a very complex process ruled by numerous factors. A small but important proportion of cases of chondrocalcinosis are monogenic, and many of the genes involved have been identified. These genetic findings strongly point to control of the level of extracellular inorganic pyrophosphate as the primary mechanism for their association with either calcium pyrophosphate dihydrate or hydroxyapatite deposition. However, effects on extracellular inorganic pyrophosphate levels do not explain the mechanism of association in all of these monogenic diseases. Further, there are likely to be several as yet unidentified genes that are important in this common condition. This review highlights what genetic studies have demonstrated about the processes involved in these diverse but related disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brain is well protected against microbial invasion by cellular barriers, such as the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). In addition, cells within the central nervous system (CNS) are capable of producing an immune response against invading pathogens. Nonetheless, a range of pathogenic microbes make their way to the CNS, and the resulting infections can cause significant morbidity and mortality. Bacteria, amoebae, fungi, and viruses are capable of CNS invasion, with the latter using axonal transport as a common route of infection. In this review, we compare the mechanisms by which bacterial pathogens reach the CNS and infect the brain. In particular, we focus on recent data regarding mechanisms of bacterial translocation from the nasal mucosa to the brain, which represents a little explored pathway of bacterial invasion but has been proposed as being particularly important in explaining how infection with Burkholderia pseudomallei can result in melioidosis encephalomyelitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Menstrual migraine (MM) encompasses pure menstrual migraine (PMM) and menstrually-related migraine (MRM). This study was aimed at investigating genetic variants that are potentially related to MM, specifically undertaking genotyping and mRNA expression analysis of the ESR1, PGR, SYNE1 and TNF genes in MM cases and non-migraine controls. METHODS: A total of 37 variants distributed across 14 genes were genotyped in 437 DNA samples (282 cases and 155 controls). In addition levels of gene expression were determined in 74 cDNA samples (41 cases and 33 controls). Association and correlation analysis were performed using Plink and RStudio. RESULTS: SNPs rs3093664 and rs9371601 in TNF and SYNE1 genes respectively, were significantly associated with migraine in the MM population (p = 0.008; p = 0.009 respectively). Analysis of qPCR results found no significant difference in levels of gene expression between cases and controls. However, we found a significant correlation between the expression of ESR1 and SYNE1, ESR1 and PGR and TNF and SYNE1 in samples taken during the follicular phase of the menstrual cycle. CONCLUSIONS: Our results show that SNPs rs9371601 and rs3093664 in the SYNE1 and TNF genes respectively, are associated with MM. The present study also provides strong evidence to support the correlation of ESR1, PGR, SYNE1 and TNF gene expression in MM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scientists have injected endotoxin into animals to investigate and understand various pathologies and novel therapies for several decades. Recent observations have shown that there is selective susceptibility to Escherichia coli lipopolysaccharide (LPS) endotoxin in sheep, despite having similar breed characteristics. The reason behind this difference is unknown, and has prompted studies aiming to explain the variation by proteogenomic characterisation of circulating acute phase biomarkers. It is hypothesised that genetic trait, biochemical, immunological and inflammation marker patterns contribute in defining and predicting mammalian response to LPS. This review discusses the effects of endotoxin and host responses, genetic basis of innate defences, activation of the acute phase response (APR) following experimental LPS challenge, and the current approaches employed in detecting novel biomarkers including acute phase proteins (APP) and micro-ribonucleic acids (miRNAs) in serum or plasma. miRNAs are novel targets for elucidating molecular mechanisms of disease because of their differential expression during pathological, and in healthy states. Changes in miRNA profiles during a disease challenge may be reflected in plasma. Studies show that gel-based two-dimensional electrophoresis (2-DE) coupled with either matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) or liquid chromatography-mass spectrometry (LC-MS/MS) are currently the most used methods for proteome characterisation. Further evidence suggests that proteomic investigations are preferentially shifting from 2-DE to non-gel based LC-MS/MS coupled with data extraction by sequential window acquisition of all theoretical fragment-ion spectra (SWATH) approaches that are able to identify a wider range of proteins. Enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and most recently proteomic methods have been used to quantify low abundance proteins such as cytokines. qRT-PCR and next generation sequencing (NGS) are used for the characterisation of miRNA. Proteogenomic approaches for detecting APP and novel miRNA profiling are essential in understanding the selective resistance to endotoxin in sheep. The results of these methods could help in understanding similar pathology in humans. It might also be helpful in the development of physiological and diagnostic screening assays for determining experimental inclusion and endpoints, and in clinical trials in future

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production mechanism of OH radicals in a pulsed DC plasma jet is studied by a two-dimensional (2-D) plasma jet model and a one-dimensional (1-D) discharge model. For the plasma jet in the open air, electron-impact dissociation of H2O, electron neutralization of H2O+, as well as dissociation of H2O by O(1D) are found to be the main reactions to generate the OH species. The contribution of the dissociation of H2O by electron is more than the others. The additions of N2, O2, air, and H2O into the working gas increase the OH density outside the tube slightly, which is attributed to more electrons produced by Penning ionization. On the other hand, the additions of O2 and H2O into the working gas increase the OH density inside the tube substantially, which is attributed to the increased O (1D) and H2O concentration, respectively. The gas flow will transport high density OH out of the tube during pulse off period. It is also shown that the plasma chemistry and reactivity can be effectively controlled by the pulse numbers. These results are supported by the laser induced fluorescence measurements and are relevant to several applications of atmospheric-pressure plasmas in health care, medicine, and materials processing.