920 resultados para GRAVITY THEORIES
Resumo:
Trade affects the internal location of industry in two ways: it induces firms to specialize and it expands the set of markets that firms serve. If there are industry-specific external economies, firms in related industries will spatially agglomerate (Hanson 1996a). In the context of economic integration, diminished barriers to trade affect industry location particularly in less developed countries. As described below, regional agreements in North America and Europe have caused frontier regions to expand. These regions, which include border regions and port cities, have advantages over internal regions in terms of access to foreign markets. Since trade liberalization induces many firms in developing countries to participate in production networks and to specialize in labor-intensive activities such as assembling and processing of foreign-made components, their inputs as well as final products need to be carried across borders. Therefore, the best industry location, one that minimizes transport costs, is likely to shift to frontier regions. In East Asia, China has developed rapidly since it opened up to international trade. Simultaneously, a large amount of foreign direct investment (FDI) has been attracted and industry agglomerations have been formed in coastal regions, that is, frontier regions linked to the global market by sea, leaving many internal regions behind. Similarly, Cambodia, Laos, Myanmar, and Vietnam (CLMV) have joined AFTA and/or the WTO and liberalized international trade since the 1990s. Moreover, transport infrastructures such as the East-West Economic Corridor, the Southern Economic Corridor, and the North-South Economic Corridor have been built and narrowed economic distances in the Greater Mekong Subregion (GMS). As a result, frontier regions are likely to increase their location advantages and lure labor-intensive operations from neighboring countries. It is expected that, as has happened in North America and Europe, economic integration in East Asia will significantly affect internal geography in CLMV. In this study, I first review theories relevant to economic integration and industry location within a country. In particular, emphasis is placed on the new economic geography (NEG). Secondly, empirical results for North America and Europe are surveyed since they have preceded East Asia in regional integration and a substantial number of studies have been conducted on these regions. The final section summarizes and discusses implications for internal geography in CLMV.
Resumo:
In this paper, using the worldwide dataset of bilateral tariff rates, we explore how serious the omission of bilateral tariff rates in gravity is. Our findings are as follow. Firstly, the omission of bilateral tariff rates seems not to be so serious in terms of omitted-variable biases because the coefficients for the usual gravity variables do not change before or after their inclusion. Secondly, while the widely-used dummy variable of regional trade agreement could not play an alternative role in place of tariff rates, the inclusion of time-invariant pair fixed effects in addition to the time-variant importer fixed effects and exporter fixed effects accounts for the omission of tariff rates. The inclusion of those fixed effects makes the coefficient for bilateral tariff rates insignificant.
Resumo:
Easing of economic sanctions by Western countries in 2012 augmented the prospect that Myanmar will expand its exports. On the other hand, a sharp rise in natural resource exports during the sanctions brings in a concern about the "Dutch disease". This study projects Myanmar's export potential by calculating counterfactual export values with an augmented gravity model that takes into account the effects of natural resource exports on non-resource exports. Without taking into account the effects of natural resource exports, the counterfactual predicted values of non-resource exports during 2004–2011 are more than five times larger than the actual exports. If we take into account the effects, however, the predicted values are smaller than the actual exports. The empirical results imply that the "Dutch disease" is at stake in Myanmar than any other Southeast Asian countries.
Resumo:
Stereo video techniques are effective for estimating the space-time wave dynamics over an area of the ocean. Indeed, a stereo camera view allows retrieval of both spatial and temporal data whose statistical content is richer than that of time series data retrieved from point wave probes. Classical epipolar techniques and modern variational methods are reviewed to reconstruct the sea surface from the stereo pairs sequentially in time. Current improvements of the variational methods are presented.
Resumo:
A maritime construction is usually a slender line in the ocean.It is usual to see just its narrow surface strip and not analyse the large amount of submerged material the latter is supporting.Without doubt,it is the ground to which a notable load is transmitted in an environment subjected to periodic,alternating stresses,dynamic forces which the sea's media constitute. Both an outer and inner maritime construction works in a complex fashion.A granular solid(breakwater)breathes with the incident wave flow,dissipating part of the wave energy between its gaps.The backflow tries to extract the different items from the solid block,setting a balance between effective and neutral tensions that follow Terzaghui's principle. On some occasions,fluidification of the armour layer has caused the breakwater to collapse(Sines,Portugal,February 1978).On others,siphoning or liquefaction of sand supporting monoliths(vertical breakwaters)lead them to destruction or collapse(New Barcelona Harbour Mouth,Spain,November 2001). This is why the ground-force-structure interaction is a complicated analysis with joint design tools still in an incipient state. The purpose of this article is to describe two singular failures in inner maritime constructions in Spain deriving from ground problems(Malaga,July 2004and Barcelona,January 2007).They occurred recently and the causes are the subject of reflection and analysis.
Resumo:
Plate-bandes are straight masonry arches (they are called, also, flat arches or lintel arches). Ideally they have the surfaces of extrados and intrados plane and horizontal. The stones or bricks have radial joints converging usually in one centre. The voussoirs have the form of wedges and in French they are called "claveaux". A plate-bande is, in fact, a lintel made of several stones and the proportions of lintels and plate-bandes are similar. Proportions of plate-bandes, that is the relationship between the thickness t and the span s (t/s)varies, typically between 1/4–1/3 in thick plate-bandes, and is less than 1/20 in the most slender ones. A ratio of circa 1/8 was usual in the 18th Century and follows a simple geometrical rule: the centre form with the intrados an equilateral triangle and the plate-bande should contain an arc of circle. The joints are usually plane, but in some cases present a «rebated» or «stepped» form. Plate-bandes exert an inclined thrust as any masonry arch. This thrust is usually very high and it requires either massive buttresses, or to be built in the middle of thick walls. Master builders and architects have tried since antiquity to calculate the abutment necessary for any arch. A modern architect or engineer will measure the arch thrust in units of force, kN or tons. Traditionally, the thrust has been measured as the size of the buttresses to resist it safely. Old structural rules, then, addressed the design problem establishing a relationship between the span and the depth of the buttress. These were empirical rules, particular for every type of arch or structure in every epoch. Thus, the typical gothic buttress is 1/4 of the vault span, but a Renaissance or baroque barrel vault will need more than 1/3 of the span. A plate-bande would require more than one half of the span; this is precisely the rule cited by the French engineer Gautier, who tried unsuccessfully to justify it by static reasons. They were used, typically, to form the lintels of windows or doors (1-2 m, typically); in Antiquity they were used, also, though rarely, at the gates of city walls or in niches (ca. 2 m, reaching 5.2 m). Plate-bandes may show particular problems: it is not unusual that some sliding of the voussoirs can be observed, particularly in thick plate-bandes. The stepped joints on Fig. 1, left, were used to avoid this problem. There are other «hidden» methods, like iron cramps or the use of stone wedges, etc. In seismic zones these devices were usual. Another problem relates to the deformation; a slight yielding of the abutments, or even the compression of the mortar joints, may lead to some cracking and the descent of the central keystone. Even a tiny descent will convert the original straight line of the intrados in a broken line with a visible «kink» or angle in the middle. Of course, both problems should be avoided. Finally, the wedge form of the voussoirs lead to acute angles in the stones and this can produce partial fractures; this occurs usually at the inferior border of the springers at the abutments. It follows, that to build a successful plate-bande is not an easy matter. Also, the structural study of plate-bandes is far from simple, and mechanics and geometry are related in a particular way. In the present paper we will concentrate on the structural aspects and their constructive consequences, with a historical approach. We will outline the development of structural analysis of plate-bandes from ca. 1700 until today. This brief history has a more than purely academic interest. Different approaches and theories pointed to particular problem, and though the solution given may have been incorrect, the question posed was often pertinent. The paper ends with the application of modern Limit Analysis of Masonry Structures, developed mainly by professor Heyman in the last fifty years. The work aims, also, to give some clues for the actual architect and engineer involved in the analysis or restoration of masonry buildings.
Resumo:
Problems related to several fluid physics experiments the case of two experiemnts to be performed under reduced gravity, onboard Space- temperatures,lab (1st Mission), are discussed. Special attention is placed on parallel and preparatory work on erth, wich could throw some light on the opportunity, present interest and limitations of these experiments. The need for strong supporting fundamental research and, in particular, a more precise determination of the paremeters involved, is stressed.
Resumo:
The objective of this paper is to analyse the influence of the variation of some parameters used in the analysis of the dynamic response of offshore structures under the action of wind generated waves. The structural response has been obtained by stochastic methods using two discretization models. One with lumped parameters, using translational degrees of freedom (d.o.f.) and the other with one-dimensional finite elements. Using each of these methods the problem has been solved with several d.o.f., analysing the influence of the number of d.o.f. on the results.
Resumo:
Stereo video techniques are effective for estimating the space–time wave dynamics over an area of the ocean. Indeed, a stereo camera view allows retrieval of both spatial and temporal data whose statistical content is richer than that of time series data retrieved from point wave probes. We present an application of the Wave Acquisition Stereo System (WASS) for the analysis of offshore video measurements of gravity waves in the Northern Adriatic Sea and near the southern seashore of the Crimean peninsula, in the Black Sea. We use classical epipolar techniques to reconstruct the sea surface from the stereo pairs sequentially in time, viz. a sequence of spatial snapshots. We also present a variational approach that exploits the entire data image set providing a global space–time imaging of the sea surface, viz. simultaneous reconstruction of several spatial snapshots of the surface in order to guarantee continuity of the sea surface both in space and time. Analysis of the WASS measurements show that the sea surface can be accurately estimated in space and time together, yielding associated directional spectra and wave statistics at a point in time that agrees well with probabilistic models. In particular, WASS stereo imaging is able to capture typical features of the wave surface, especially the crest-to-trough asymmetry due to second order nonlinearities, and the observed shape of large waves are fairly described by theoretical models based on the theory of quasi-determinism (Boccotti, 2000). Further, we investigate space–time extremes of the observed stationary sea states, viz. the largest surface wave heights expected over a given area during the sea state duration. The WASS analysis provides the first experimental proof that a space–time extreme is generally larger than that observed in time via point measurements, in agreement with the predictions based on stochastic theories for global maxima of Gaussian fields.
Resumo:
This paper presents a simple gravity evaluation model for large reflector antennas and the experimental example for a case study of one uplink array of 4x35-m antennas at X and Ka band. This model can be used to evaluate the gain reduction as a function of the maximum gravity distortion, and also to specify this at system designer level. The case study consists of one array of 35-m antennas for deep space missions. Main issues due to the gravity effect have been explored with Monte Carlo based simulation analysis.
Resumo:
Some similarities between ion waves in plasmas and gravity waves in incompressible fluids are investigated. It is shown that for zero ion temperature the ion-wave dispersion relation is similar to that of gravity waves in a stratified liquid between rigid, horizontal walls; for large wavelength the ion waves behave as the surface gravity waves of shallow-water theory. The general character of the pattern of ion waves arising in steady plasma flows is analyzed for arbitrary ion temperature, wavelength, and acoustic mach number (which is based on the ion-acoustic speed), and is compared to the pattern of surface gravity waves in steady water flows when surface tension is taken into account.