739 resultados para GENTLE ALGEBRAS
Resumo:
Partially supported by grant RFFI 98-01-01020.
Resumo:
Some relationships between representations of a hypergroup X, its algebras, and positive definite functions on X are studied. Also, various types of convergence of positive definite functions on X are discussed.
Resumo:
Given a differentiable action of a compact Lie group G on a compact smooth manifold V , there exists [3] a closed embedding of V into a finite-dimensional real vector space E so that the action of G on V may be extended to a differentiable linear action (a linear representation) of G on E. We prove an analogous equivariant embedding theorem for compact differentiable spaces (∞-standard in the sense of [6, 7, 8]).
Resumo:
This paper is a survey of our recent results on the bispectral problem. We describe a new method for constructing bispectral algebras of any rank and illustrate the method by a series of new examples as well as by all previously known ones. Next we exhibit a close connection of the bispectral problem to the representation theory of W1+∞–algerba. This connection allows us to explain and generalise to any rank the result of Magri and Zubelli on the symmetries of the manifold of the bispectral operators of rank and order two.
Resumo:
We define Bäcklund–Darboux transformations in Sato’s Grassmannian. They can be regarded as Darboux transformations on maximal algebras of commuting ordinary differential operators. We describe the action of these transformations on related objects: wave functions, tau-functions and spectral algebras.
Resumo:
A spatial object consists of data assigned to points in a space. Spatial objects, such as memory states and three dimensional graphical scenes, are diverse and ubiquitous in computing. We develop a general theory of spatial objects by modelling abstract data types of spatial objects as topological algebras of functions. One useful algebra is that of continuous functions, with operations derived from operations on space and data, and equipped with the compact-open topology. Terms are used as abstract syntax for defining spatial objects and conditional equational specifications are used for reasoning. We pose a completeness problem: Given a selection of operations on spatial objects, do the terms approximate all the spatial objects to arbitrary accuracy? We give some general methods for solving the problem and consider their application to spatial objects with real number attributes. © 2011 British Computer Society.
Resumo:
There are applied power mappings in algebras with logarithms induced by a given linear operator D in order to study particular properties of powers of logarithms. Main results of this paper will be concerned with the case when an algebra under consideration is commutative and has a unit and the operator D satisfies the Leibniz condition, i.e. D(xy) = xDy + yDx for x, y ∈ dom D. Note that in the Number Theory there are well-known several formulae expressed by means of some combinations of powers of logarithmic and antilogarithmic mappings or powers of logarithms and antilogarithms (cf. for instance, the survey of Schinzel S[1].
Resumo:
AMS Subj. Classification: 03C05, 08B20
Resumo:
2000 Mathematics Subject Classification: 16R10, 16R20, 16R50