890 resultados para GALLIUM NITRIDE NANOWIRES
Resumo:
Cobalt nanowires with controlled diameters have been synthesized using electrochemical deposition in etched ion-track polycarbonate membranes. Structural characterization of these nanowires with diameter 70, 90, 120 nm and length 30 mu m was performed by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray diffraction techniques. The as-prepared wires show uniform diameter along the whole length and X-ray diffraction analysis reveals that [002] texture of these wires become more pronounced as diameter is reduced. Magnetic characterization of the nanowires shows a clear difference of squareness and coercivity between parallel and perpendicular orientations of the wires with respect to the applied field direction. In case of parallel applied field, the coercivity has been found to be decreasing with increasing diameter of the wires while in perpendicular case; the coercivity observes lower values for larger diameter. The results are explained by taking into account the magnetocrystalline and shape anisotropies with respect to the applied field and domain transformation mechanism when single domain limit is surpassed.
Resumo:
The hallmark of materials science is the ability to tailor the structures of a given material to provide a desired response. In this work, the structures involving crystallinity and crystallographic orientation of Cu nanowires electrochemically fabricated in ion-track templates have been investigated as a function of fabrication condition. Both single crystalline and polycrystalline nanowires were obtained by adjusting applied voltages and temperatures of electrochemical deposition. The anti-Hall-Petch effect was experimentally evidenced in the polycrystalline nanowires. The dominant crystallographic orientations of wires along [111], [100], or [110] directions were obtained by selecting electrochemical deposition conditions, i.e., H2SO4 concentration in electrolyte, applied voltage, and electrodeposition temperature.
Resumo:
Synthesis of segmented all-Pt nanowires is achieved by a template-assisted method. The combination of a suitably chosen electrolyte/template system with pulse-reverse electrodeposition allows the formation of well-defined segments linked to nanowires. Manipulation of the morphology is obtained by controlling the electrokinetie effects on the local electrolyte distribution inside the nanochannels during the nanowire growth process, allowing a deviation from the continuously cylindrical geometry given by the nanoporous template. The length of the segments can be adjusted as a function of the cathodic pulse duration. Applying constant pulses leads to segments with homogeneous shape and dimensions along most of the total wire length. X-ray diffraction demonstrates that the preferred crystallite orientation of the polycrystalline wires varies with the average segment length. The results are explained considering transitions in texture formation with increasing thickness of the electrodeposit. A mechanism of segment formation is proposed based on structural characterizations. Nanowires with controlled segmented morphology are of great technological importance, because of the possibility to precisely control their substructure as a means of tuning their electrical, thermal, and optical properties. The concept we present in this work for electrodeposited platinum and track-etched polycarbonate membranes can be applied to other selected materials as well as templates and constitutes a general method to controlled nanostructuring and synthesis of shape controlled nanostructures.
Resumo:
The catalytic properties of the passivated, reduced passivated, and fresh bulk molybdenum nitride for hydrazine decomposition were evaluated in a microreactor. The reaction route of hydrazine decomposition over molybdenum nitride catalysts seems to be the same as that of Ir/gamma-Al2O3 catalysts. Below 673 K, the hydrazine decomposes into N-2 and NH3. Above 673 K, the hydrazine decomposes into N-2 and NH3 first, and then the produced NH3 further dissociates into N-2 and H-2. From the in situ FT-IR spectroscopy, hydrazine is adsorbed and decomposes mainly on the Mo site of the Mo2N/gamma-Al2O3 catalyst. (C) 2004 Elsevier Inc. All rights reserved.
In situ IR spectroscopic studies on molybdenum nitride catalysts: active sites and surface reactions
Resumo:
Recent IR spectroscopic studies on the surface properties of fresh Mo2N/gamma-Al2O3 catalyst are presented in this paper. The surface sites of fresh Mo2N/gamma-Al2O3, both Modelta+ (0<δ<2) and N sites, are probed by CO adsorption. Two characteristic IR bands were observed at 2045 and 2200 cm(-1), due to linearly adsorbed CO on Mo and N sites, respectively. The surface N sites are highly reactive and can react with adsorbed CO to form NCO species. Unlike adsorbed CO on reduced passivated one, the adsorbed CO on fresh Mo2N/gamma-Al2O3 behaves similarly to that of group VIII metals, suggesting that fresh nitride resembles noble metals. It is found that the surface of Mo nitrides slowly transformed into sulfide under hydrotreating conditions, which could be the main reason for the activity drop of molybdenum nitride catalysts in the presence of sulfur-containing species. Some surface reactions, such as selective hydrogenation of 1,3-butadiene, isomerization of 1-butene, and hydrodesulfurization of thiophene, were studied on both fresh and reduced passivated Mo2N/gammaAl(2)O(3) catalysts using IR spectroscopy. The mechanisms of these reactions are proposed. The adsorption and reaction behaviors of these molecules on fresh molybdenum nitride also resemble those on noble metals, manifesting the unique properties of fresh molybdenum nitride catalysts. Mo and N sites are found to play different roles in the adsorption and catalytic reactions on the fresh Mo2N/gammaAl(2)O(3) catalyst. Generally, Mo sites are the main active sites for the adsorption and reactions of adsorbates; N sites are not directly involved in catalytic reactions but they modify the electronic properties of Mo sites.
Resumo:
The adsorption of CO on both nitrided and reduced passivated Mo(2)N catalysts in either alumina supported or unsupported forms was studied by adsorption microcalorimetry and infrared (IR) spectroscopy. The CO is adsorbed on nitrided Mo(2)N catalysts on three different surface sites: 4-fold vacancies, Mo(delta+) ( 0 < delta < 2) and N sites, with differential heats of CO adsorption decreasing in the same order. The presence of the alumina-support affects the energetic distribution of the adsorption sites on the nitrided Mo(2)N, i.e. weakens the CO adsorption strength on the different sites and changes the fraction of sites adsorbing CO in a specific form, revealing that the alumina supported Mo(2)N phase shows lower electron density than pure Mo(2)N. On reduced passivated Mo(2)N catalysts the CO was found to adsorb mainly on Mo(4+) sites, although some slightly different surface Mo(delta+) d (0 < delta < 2) sites are also detected. The nature, density and distribution of surface sites of reduced passivated Mo(2)N/gAl(2)O(3) were similar to those on reduced MoO(3)/gamma-Al(2)O(3).
Resumo:
The catalytic decomposition of hydrazine over a series of MoNx/gamma-Al2O3 catalysts with different Mo loadings was investigated in a monopropellant thruster (10 N). When the Mo loading is equal to or higher than the monolayer coverage of MoO3 on gamma-Al2O3, the catalytic performance of the supported molybdenum nitride catalyst is close to that of the conventionally used Ir/gamma-Al2O3 catalyst. The MoNx/gamma-Al2O3 catalyst with a loading of about 23wt% Mo (1.5 monolayers) shows the highest activity for hydrazine decomposition. There is an activation process for the MoNx/gamma-Al2O3 catalysts at the early stage of hydrazine decomposition, which is probably due to the reduction of the oxide layer formed in the passivation procedure.
Resumo:
In this work, we demonstrate a new and simple method for preparing Au nanowires by ethanol reduction of hydrogen tetrachloroaurate (HAuCl4) without additional capping agents by a thermal process. The resulting products were investigated by UV-vis spectroscopy. transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results indicated that the size and shape of the Au nanocrystals could be controlled by systematic variation of the experimental parameters including the concentration of HAuCl4 in the reaction solution, heating temperature and reaction time.
Resumo:
We describe an aggregation-based growth mechanism for formation of silver nanowires at room temperature. It is found that the pH of solution and the concentration of L-cysteine capping molecules have an important effect on the formation and growth of nanowires. Characterization by atomic force microscopy (AFM) and UV-vis spectroscopy recorded as time clearly shows that the silver nanowires are grown at the expense of nanoparticles.
Resumo:
One-dimensional CaWO4 and CaWO4:Tb3+ nanowires and nanotubes have been prepared by a combination method of sol-gel process and electrospinning. X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), low voltage cathodoluminescence (CL) and time-resolved emission spectra, as well as kinetic decays were used to characterize the resulting samples. The results of XRD, FT-IR, TG-DTA indicate that the CaWO4 and CaWO4: Tb3+ samples begin to crystallize at 500 degrees C with the scheelite structure. Under ultraviolet excitation and low-voltage electron beams excitation, the CaWO4 samples exhibit a blue emission band with a maximum at 416 nm originating from the WO42- groups, while the CaWO4:Tb3+ samples show the characteristic emission of Tb3+ corresponding to (D4-F6,5,4,3)-D-5-F-7 transitions due to an efficient energy transfer from WO42- to Tb3+.
Resumo:
In this paper, we reported the synthesis of nearly monodisperse and well-defined one-dimensional (1D) rare earth fluoride(beta-NaREF4) (RE = Y, Sm, Eu, Gd, Tb, Dy, and Ho) nanowires/nanorods by in situ acid corrosion and anion exchange approach using RE(OH)(3) as precursors via a facile hydrothermal route. X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy. scanning electron microscopy (SEM), transmission electron microscopy (TEM). high-resolution transmission electron microscopy (HRTEM), and photoluminescence(PL)spectroscopy were used to characterize the samples. The results show that the as-prepared rare earth fluoride (beta-NaREF4) nanowires/nanorods preserve the basic morphology of the initial RE(OH)(3) precursors.
Resumo:
Large-scale GdVO4:Eu3+ nanowires with diameters of about 15 nm and lengths of several micrometers were achieved by a facile hydrothermal method in the presence of disodium ethylenediamine tetraacetate (Na2H2L). The influences of several parameters, such as pH value, reaction temperature, and molar ratio of Na2H2L to Gd3+ on the final products were investigated. The formation mechanism of the as-obtained GdVO4:Eu3+ nanowires is proposed on the basis of time-dependent experiments. It is found that the organic additive Na2H2L, which acts as a shape modifier, has a dynamic effect by adjusting the growth rates of different facets, resulting in the formation of the GdVO4:Eu3+ nanowires. The luminescent spectrum of GdVO4:Eu3+ nanowires shows the strong characteristic dominant emission of the Eu3+ ions at 614 nm.
Resumo:
Uniform NaLuF(4) nanowires and LuBO(3) microdisks have been successfully prepared by a designed chemical conversion method. The lutetium precursor nanowires were first prepared through a simple hydrothermal process. Subsequently, uniform NaLuF(4) nanowires and LuBO(3) microdisks were synthesized at the expense of the precursor by a hydrothermal conversion process. The whole process was carried out in aqueous condition without any organic solvents, surfactant, or catalyst. The conversion processes from precursor to the final products have been investigated in detail. The as-obtained Eu(3+) and Tb(3+)-doped LuBO(3) microdisks and NaLuF(4) nanowires show strong characteristic red and green emissions under ultraviolet excitation or low-voltage electron beam excitation. Moreover, the luminescence colors of the Eu(3+) and Tb(3+) codoped LuBO(3) samples can be tuned from red, orange, yellow, and green-yellow to green by simply adjusting the relative doping concentrations of the activator ions under a single wavelength excitation, which might find potential applications in the fields such as light display systems and optoelectronic devices.
Resumo:
Uniform Gd(OH)(3) nanotubes have been prepared via a simple wet-chemical route at ambient pressure and low temperature, without any catalysts, templates, or substrates, in which Gd(NO3)(3) was used as the gallium source and ammonia as the alkali. SEM and TEM images indicate that the as-obtained Gd(OH)3 entirely consists of uniform nanotubes in high yield with diameters of about 40 nm and lengths of 200-300 nm. The temperature-dependent morphological evolution and the formation mechanism of the Gd(OH)(3) nanotubes were investigated in detail. Furthermore, the Gd2O3 and Eu3+-doped Gd2O3 nanotubes, which inherit their parents' morphology, were obtained during a direct annealing process in air. The corresponding Gd2O3:Eu3+ nanotubes exhibit the strong red emission corresponding to the D-5(0)-F-7(2), transition of the Eu3+ ions under UV light or low-voltage electron beam excitation, which might find potential applications in the fields such as light-emitting phosphors, advanced flat panel displays, or biological labeling.
Resumo:
The quinacridone derivatives N,N'-dialkyl-1,3,8,10-tetramethylquinacridone (CnTMQA, n = 6, 10, 14) were used as building blocks to assemble luminescent nano- and microscale wires. It was demonstrated that CnTMQA with different lengths of alkyl chains display obviously different wire formation properties. C10TMQA and C14TMQA showed a stronger tendency to form 1-D nano- and microstructures compared with C6TMQA. The C10TMQA molecules could be employed to fabricate the wires with different diameters, which exhibited a size-dependent luminescence property. The emission spectrum of the C10TMQA wires with diameters of 200-500 nm shows a broad emission band at 560 nm and a shoulder at around 535 nm, while the emission spectrum of the C10TMQA wires with diameters of 2-3 mu m reveals a narrower emission band at 563 nm. For the CnTMQA-based samples with different morphologies, the emission property change tendency agrees with that of the powder X-ray diffraction patterns of these samples.