931 resultados para Functional-cognitive approach
Resumo:
Despite the widespread popularity of linear models for correlated outcomes (e.g. linear mixed modesl and time series models), distribution diagnostic methodology remains relatively underdeveloped in this context. In this paper we present an easy-to-implement approach that lends itself to graphical displays of model fit. Our approach involves multiplying the estimated marginal residual vector by the Cholesky decomposition of the inverse of the estimated marginal variance matrix. Linear functions or the resulting "rotated" residuals are used to construct an empirical cumulative distribution function (ECDF), whose stochastic limit is characterized. We describe a resampling technique that serves as a computationally efficient parametric bootstrap for generating representatives of the stochastic limit of the ECDF. Through functionals, such representatives are used to construct global tests for the hypothesis of normal margional errors. In addition, we demonstrate that the ECDF of the predicted random effects, as described by Lange and Ryan (1989), can be formulated as a special case of our approach. Thus, our method supports both omnibus and directed tests. Our method works well in a variety of circumstances, including models having independent units of sampling (clustered data) and models for which all observations are correlated (e.g., a single time series).
Resumo:
This article provides a selective overview of the functional neuroimaging literature with an emphasis on emotional activation processes. Emotions are fast and flexible response systems that provide basic tendencies for adaptive action. From the range of involved component functions, we first discuss selected automatic mechanisms that control basic adaptational changes. Second, we illustrate how neuroimaging work has contributed to the mapping of the network components associated with basic emotion families (fear, anger, disgust, happiness), and secondary dimensional concepts that organise the meaning space for subjective experience and verbal labels (emotional valence, activity/intensity, approach/withdrawal, etc.). Third, results and methodological difficulties are discussed in view of own neuroimaging experiments that investigated the component functions involved in emotional learning. The amygdala, prefrontal cortex, and striatum form a network of reciprocal connections that show topographically distinct patterns of activity as a correlate of up and down regulation processes during an emotional episode. Emotional modulations of other brain systems have attracted recent research interests. Emotional neuroimaging calls for more representative designs that highlight the modulatory influences of regulation strategies and socio-cultural factors responsible for inhibitory control and extinction. We conclude by emphasising the relevance of the temporal process dynamics of emotional activations that may provide improved prediction of individual differences in emotionality.
Resumo:
Searching for the neural correlates of visuospatial processing using functional magnetic resonance imaging (fMRI) is usually done in an event-related framework of cognitive subtraction, applying a paradigm comprising visuospatial cognitive components and a corresponding control task. Besides methodological caveats of the cognitive subtraction approach, the standard general linear model with fixed hemodynamic response predictors bears the risk of being underspecified. It does not take into account the variability of the blood oxygen level-dependent signal response due to variable task demand and performance on the level of each single trial. This underspecification may result in reduced sensitivity regarding the identification of task-related brain regions. In a rapid event-related fMRI study, we used an extended general linear model including single-trial reaction-time-dependent hemodynamic response predictors for the analysis of an angle discrimination task. In addition to the already known regions in superior and inferior parietal lobule, mapping the reaction-time-dependent hemodynamic response predictor revealed a more specific network including task demand-dependent regions not being detectable using the cognitive subtraction method, such as bilateral caudate nucleus and insula, right inferior frontal gyrus and left precentral gyrus.
Resumo:
We develop fast fitting methods for generalized functional linear models. An undersmooth of the functional predictor is obtained by projecting on a large number of smooth eigenvectors and the coefficient function is estimated using penalized spline regression. Our method can be applied to many functional data designs including functions measured with and without error, sparsely or densely sampled. The methods also extend to the case of multiple functional predictors or functional predictors with a natural multilevel structure. Our approach can be implemented using standard mixed effects software and is computationally fast. Our methodology is motivated by a diffusion tensor imaging (DTI) study. The aim of this study is to analyze differences between various cerebral white matter tract property measurements of multiple sclerosis (MS) patients and controls. While the statistical developments proposed here were motivated by the DTI study, the methodology is designed and presented in generality and is applicable to many other areas of scientific research. An online appendix provides R implementations of all simulations.
Resumo:
We previously showed that lifetime cumulative lead dose, measured as lead concentration in the tibia bone by X-ray fluorescence, was associated with persistent and progressive declines in cognitive function and with decreases in MRI-based brain volumes in former lead workers. Moreover, larger region-specific brain volumes were associated with better cognitive function. These findings motivated us to explore a novel application of path analysis to evaluate effect mediation. Voxel-wise path analysis, at face value, represents the natural evolution of voxel-based morphometry methods to answer questions of mediation. Application of these methods to the former lead worker data demonstrated potential limitations in this approach where there was a tendency for results to be strongly biased towards the null hypothesis (lack of mediation). Moreover, a complimentary analysis using anatomically-derived regions of interest volumes yielded opposing results, suggesting evidence of mediation. Specifically, in the ROI-based approach, there was evidence that the association of tibia lead with function in three cognitive domains was mediated through the volumes of total brain, frontal gray matter, and/or possibly cingulate. A simulation study was conducted to investigate whether the voxel-wise results arose from an absence of localized mediation, or more subtle defects in the methodology. The simulation results showed the same null bias evidenced as seen in the lead workers data. Both the lead worker data results and the simulation study suggest that a null-bias in voxel-wise path analysis limits its inferential utility for producing confirmatory results.
Resumo:
During development of the vertebrate vascular system essential signals are transduced via protein-tyrosine phosphorylation. Null-mutations of receptor-tyrosine kinase (RTK) genes expressed in endothelial cells (ECs) display early lethal vascular phenotypes. We aimed to identify endothelial protein-tyrosine phosphatases (PTPs), which should have similar importance in EC-biology. A murine receptor-type PTP was identified by a degenerated PCR cloning approach from endothelial cells (VE-PTP). By in situ hybridization this phosphatase was found to be specifically expressed in vascular ECs throughout mouse development. In experiments using GST-fusion proteins, as well as in transient transfections, trapping mutants of VE-PTP co-precipitated with the Angiopoietin receptor Tie-2, but not with the Vascular Endothelial Growth Factor receptor 2 (VEGFR-2/Flk-1). In addition, VE-PTP dephosphorylates Tie-2 but not VEGFR-2. We conclude that VE-PTP is a Tie-2 specific phosphatase expressed in ECs, and VE-PTP phosphatase activity serves to specifically modulate Angiopoietin/Tie-2 function. Based on its potential role as a regulator of blood vessel morphogenesis and maintainance, VE-PTP is a candidate gene for inherited vascular malformations similar to the Tie-2 gene.
Resumo:
Mild cognitive impairment (MCI) often refers to the preclinical stage of dementia, where the majority develop Alzheimer's disease (AD). Given that neurodegenerative burden and compensatory mechanisms might exist before accepted clinical symptoms of AD are noticeable, the current prospective study aimed to investigate the functioning of brain regions in the visuospatial networks responsible for preclinical symptoms in AD using event-related functional magnetic resonance imaging (fMRI). Eighteen MCI patients were evaluated and clinically followed for approximately 3 years. Five progressed to AD (PMCI) and eight remained stable (SMCI). Thirteen age-, gender- and education-matched controls also participated. An angle discrimination task with varying task demands was used. Brain activation patterns as well as task demand-dependent and -independent signal changes between the groups were investigated by using an extended general linear model including individual performance (reaction time [RT]) of each single trial. Similar behavioral (RT and accuracy) responses were observed between MCI patients and controls. A network of bilateral activations, e.g. dorsal pathway, which increased linearly with increasing task demand, was engaged in all subjects. Compared with SMCI patients and controls, PMCI patients showed a stronger relation between task demand and brain activity in left superior parietal lobules (SPL) as well as a general task demand-independent increased activation in left precuneus. Altered brain function can be detected at a group level in individuals that progress to AD before changes occur at the behavioral level. Increased parietal activation in PMCI could reflect a reduced neuronal efficacy due to accumulating AD pathology and might predict future clinical decline in patients with MCI.
Resumo:
The hypothesis of a functional disconnection of neuro-cognitive networks in patients with mild cognitive impairment (MCI) and Alzheimer Dementia was investigated using baseline resting EEG data. EEG databases from New York (264 subjects) and Stockholm (155 subjects), including healthy controls and patients with varying degrees of cognitive decline or Alzheimer Dementia were analyzed using Global Field Synchronization (GFS), a novel measure of global EEG synchronization. GFS reflects the global amount of phase-locked activity at a given frequency by a single number; it is independent of the recording reference and of implicit source models. Patients showed decreased GFS values in Alpha, Beta, and Gamma frequency bands, and increased GFS values in the Delta band, confirming the hypothesized disconnection syndrome. The results are discussed within the framework of current knowledge about the functional significance of the affected frequency bands.
Resumo:
We combined repetitive transcranial magnetic stimulation (rTMS) and functional magnetic resonance imaging (fMRI) to investigate the functional relevance of parietal cortex activation during the performance of visuospatial tasks. fMRI provides information about local transient changes in neuronal activation during behavioural or cognitive tasks. Information on the functional relevance of this activation was obtained by using rTMS to induce temporary regional deactivations. We thereby turned the physiological parameter of brain activity into an independent variable controlled and manipulated by the experimenter and investigated its effect on the performance of the cognitive tasks within a controlled experimental design. We investigated cognitive tasks that were performed on the same visual material but differed in the demand on visuospatial functions. For the visuospatial tasks we found a selective enhancement of fMRI signal in the superior parietal lobule (SPL) and a selective impairment of performance after rTMS to this region in comparison to a control group. We could thus show that the parietal cortex is functionally important for the execution of spatial judgements on visually presented material and that TMS as an experimental tool has the potential to interfere with higher cognitive functions such as visuospatial information processing.
Resumo:
A patient-specific surface model of the proximal femur plays an important role in planning and supporting various computer-assisted surgical procedures including total hip replacement, hip resurfacing, and osteotomy of the proximal femur. The common approach to derive 3D models of the proximal femur is to use imaging techniques such as computed tomography (CT) or magnetic resonance imaging (MRI). However, the high logistic effort, the extra radiation (CT-imaging), and the large quantity of data to be acquired and processed make them less functional. In this paper, we present an integrated approach using a multi-level point distribution model (ML-PDM) to reconstruct a patient-specific model of the proximal femur from intra-operatively available sparse data. Results of experiments performed on dry cadaveric bones using dozens of 3D points are presented, as well as experiments using a limited number of 2D X-ray images, which demonstrate promising accuracy of the present approach.
Resumo:
Over the last decade, increasing evidence of cognitive functions of the cerebellum during development and learning processes could be ascertained. Posterior fossa malformations such as cerebellar hypoplasia or Joubert syndrome are known to be related to developmental problems in a marked to moderate extent. More detailed analyses reveal special deficits in attention, processing speed, visuospatial functions, and language. A study about Dandy Walker syndrome states a relationship of abnormalities in vermis lobulation with developmental problems. Further lobulation or volume abnormalities of the cerebellum and/or vermis can be detected in disorders as fragile X syndrome, Downs's syndrome, William's syndrome, and autism. Neuropsychological studies reveal a relation of dyslexia and attention deficit disorder with cerebellar functions. These functional studies are supported by structural abnormalities in neuroimaging in these disorders. Acquired cerebellar or vermis atrophy was found in groups of children with developmental problems such as prenatal alcohol exposure or extreme prematurity. Also, focal lesions during childhood or adolescence such as cerebellar tumor or stroke are related with neuropsychological abnormalities, which are most pronounced in visuospatial, language, and memory functions. In addition, cerebellar atrophy was shown to be a bad prognostic factor considering cognitive outcome in children after brain trauma and leukemia. In ataxia teleangiectasia, a neurodegenerative disorder affecting primarily the cerebellar cortex, a reduced verbal intelligence quotient and problems of judgment of duration are a hint of the importance of the cerebellum in cognition. In conclusion, the cerebellum seems to play an important role in many higher cognitive functions, especially in learning. There is a suggestion that the earlier the incorrect influence, the more pronounced the problems.
Resumo:
Rationale: To provide a better understanding of cognitive functioning, motor outcome, behavior and quality of life after childhood stroke and to study the relationship between variables expected to influence rehabilitation and outcome (age at stroke, time elapsed since stroke, lateralization, location and size of lesion). Methods: Children who suffered from stroke between birth and their eighteenth year of life underwent an assessment consisting of cognitive tests (WISC-III, WAIS-R, K-ABC, TAP, Rey-Figure, German Version of the CVLT) and questionnaires (Conner's Scales, KIDSCREEN). Results: Twenty-one patients after stroke in childhood (15 males, mean 11;11 years, SD 4;3, range 6;10-21;2) participated in the study. Mean Intelligence Quotients (IQ) were situated within the normal range (mean Full Scale IQ 96.5, range IQ 79-129). However, significantly more patients showed deficits in various cognitive domains than expected from a healthy population (Performance IQ p = .000; Digit Span p = .000, Arithmetic's p = .007, Divided Attention p = .028, Alertness p = .002). Verbal IQ was significantly better than Performance IQ in 13 of 17 patients, independent of the hemispheric side of lesion. Symptoms of ADHD occurred more often in the patients' sample than in a healthy population (learning difficulties/inattention p = .000; impulsivity/hyperactivity p = .006; psychosomatics p = .006). Certain aspects of quality of life were reduced (autonomy p = .003; parents' relation p = .003; social acceptance p = .037). Three patients had a right-sided hemiparesis, mean values of motor functions of the other patients were slightly impaired (sequential finger movements p = .000, hand alternation p = .001, foot tapping p = .043). In patients without hemiparesis, there was no relation between the lateralization of lesion and motor outcome. Lesion that occurred in the midst of childhood (5-10 years) led to better cognitive outcome than lesion in the very early (0-5 years) or late childhood (10-18 years). Other variables such as presence of seizure, elapsed time since stroke and size of lesion had a small to no impact on prognosis. Conclusion: Moderate cognitive and motor deficits, behavioral problems, and impairment in some aspects of quality of life frequently remain after stroke in childhood. Visuospatial functions are more often reduced than verbal functions, independent of the hemispheric side of lesion. This indicates a functional superiority of verbal skills compared to visuospatial skills in the process of recovery after brain injury. Compared to the cognitive outcome following stroke in adults, cognitive sequelae after childhood stroke do indicate neither the lateralization nor the location of the lesion focus. Age at stroke seems to be the only determining factor influencing cognitive outcome.
Resumo:
In the past, protease-substrate finding proved to be rather haphazard and was executed by in vitro cleavage assays using singly selected targets. In the present study, we report the first protease proteomic approach applied to meprin, an astacin-like metalloendopeptidase, to determine physiological substrates in a cell-based system of Madin-Darby canine kidney epithelial cells. A simple 2D IEF/SDS/PAGE-based image analysis procedure was designed to find candidate substrates in conditioned media of Madin-Darby canine kidney cells expressing meprin in zymogen or in active form. The method enabled the discovery of hitherto unknown meprin substrates with shortened (non-trypsin-generated) N- and C-terminally truncated cleavage products in peptide fragments upon LC-MS/MS analysis. Of 22 (17 nonredundant) candidate substrates identified, the proteolytic processing of vinculin, lysyl oxidase, collagen type V and annexin A1 was analysed by means of immunoblotting validation experiments. The classification of substrates into functional groups may propose new functions for meprins in the regulation of cell homeostasis and the extracellular environment, and in innate immunity, respectively.
Resumo:
Chronic stress is associated with hippocampal atrophy and cognitive dysfunction. This study investigates how long-lasting administration of corticosterone as a mimic of experimentally induced stress affects psychometric performance and the expression of the phosphatidylethanolamine binding protein (PEBP1) in the adult hippocampus of one-year-old male rats. Psychometric investigations were conducted in rats before and after corticosterone treatment using a holeboard test system. Rats were randomly attributed to 2 groups (n = 7) for daily subcutaneous injection of either 26.8 mg/kg body weight corticosterone or sesame oil (vehicle control). Treatment was continued for 60 days, followed by cognitive retesting in the holeboard system. For protein analysis, the hippocampal proteome was separated by 2D electrophoresis (2DE) followed by image processing, statistical analysis, protein identification via peptide mass fingerprinting and gel matching and subsequent functional network mapping and molecular pathway analysis. Differential expression of PEBP1 was additionally quantified by Western blot analysis. Results show that chronic corticosterone significantly decreased rat hippocampal PEBP1 expression and induced a working and reference memory dysfunction. From this, we derive the preliminary hypothesis that PEBP1 may be a novel molecular mediator influencing cognitive integrity during chronic corticosterone exposure in rat hippocampus.