991 resultados para Functional polymorphism
Resumo:
Clinically, heart failure is an age-dependent pathological phenomenon and displays sex-specific characteristics. The renin-angiotensin system mediates cardiac pathology in heart failure. This study investigated the sexually dimorphic functional effects of ageing combined with angiotensin II (AngII) on cardiac muscle cell function, twitch and Ca(2+)-handling characteristics of isolated cardiomyocytes from young (~13 weeks) and aged (~87 weeks) adult wild type (WT) and AngII-transgenic (TG) mice. We hypothesised that AngII-induced contractile impairment would be exacerbated in aged female cardiomyocytes and linked to Ca(2+)-handling disturbances. AngII-induced cardiomyocyte hypertrophy was evident in young adult mice of both sexes and accentuated by age (aged adult ~21-23 % increases in cell length relative to WT). In female AngII-TG mice, ageing was associated with suppressed cardiomyocyte contractility (% shortening, maximum rate of shortening, maximum rate of relaxation). This was associated with delayed cytosolic Ca(2+) removal during twitch relaxation (Tau ~20 % increase relative to young adult female WT), and myofilament responsiveness to Ca(2+) was maintained. In contrast, aged AngII-TG male cardiomyocytes exhibited peak shortening equivalent to young TG; yet, myofilament Ca(2+) responsiveness was profoundly reduced with ageing. Increased pro-arrhythmogenic spontaneous activity was evident with age and cardiac AngII overexpression in male mice (42-55 % of myocytes) but relatively suppressed in female aged transgenic mice. Female myocytes with elevated AngII appear more susceptible to an age-related contractile deficit, whereas male AngII-TG myocytes preserve contractile function with age but exhibit desensitisation of myofilaments to Ca(2+) and a heightened vulnerability to arrhythmic activity. These findings support the contention that sex-specific therapies are required for the treatment of age-progressive heart failure.
Resumo:
The intermediate hosts of Schistosoma mansoni, in Brazil, Biomphalaria glabrata, B. tenagophila and B. straminea, were identified by restriction fragment length polymorphism analysis of the mitochondrial gene cytochrome oxidase I (COI). We performed digestions with two enzymes (AluI and RsaI), previously selected, based on sequences available in Genbank. The profiles obtained with RsaI showed to be the most informative once they were polymorphic patterns, corroborating with much morphological data. In addition, we performed COI digestion of B. straminea snails from Uruguay and Argentina.
Resumo:
Expression of human leucocyte antigen (HLA) Class I molecules is essential for the recognition of malignant melanoma (MM) cells by CD8(+) T lymphocytes. A complete or partial loss of HLA Class I molecules is a potent strategy for MM cells to escape from immunosurveillance. In 2 out of 55 melanoma cell cultures we identified a complete phenotypic loss of HLA allospecificities. Both patients have been treated unsuccessfully with HLA-A2 peptides. To identify the reasons underlying the loss of single HLA-A allospecificities, we searched for genomic alterations at the locus for HLA Class I alpha-chain on chromosome 6 in melanoma cell cultures established from 2 selected patients with MM in advanced stage. This deficiency was associated with alterations of HLA-A2 gene sequences as determined by polymerase chain reaction-sequence specific primers (PCR-SSP). Karyotyping revealed a chromosomal loss in Patient 1, whereas melanoma cell cultures established from Patient 2 displayed 2 copies of chromosome 6. Loss of heterozygosity (LOH) using markers located around position 6p21 was detected in both cases. By applying group-specific primer-mixes spanning the 5'-flanking region of the HLA-A2 gene locus the relevant region was amplified by PCR and subsequent sequencing allowed alignment with the known HLA Class I reference sequences. Functional assays using HLA-A2-restricted cytotoxic T-cell clones were performed in HLA-A2 deficient MM cultures and revealed a drastically reduced susceptibility to CTL lysis in HLA-A2 negative cells. We could document the occurrence of selective HLA-A2 deficiencies in cultured advanced-stage melanoma metastases and identify their molecular causes as genomic alterations within the HLA-A gene locus.
Resumo:
BACKGROUND: The cerebellum is a complex structure that can be affected by several congenital and acquired diseases leading to alteration of its function and neuronal circuits. Identifying the structural bases of cerebellar neuronal networks in humans in vivo may provide biomarkers for diagnosis and management of cerebellar diseases. OBJECTIVES: To define the anatomy of intrinsic and extrinsic cerebellar circuits using high-angular resolution diffusion spectrum imaging (DSI). METHODS: We acquired high-resolution structural MRI and DSI of the cerebellum in four healthy female subjects at 3T. DSI tractography based on a streamline algorithm was performed to identify the circuits connecting the cerebellar cortex with the deep cerebellar nuclei, selected brainstem nuclei, and the thalamus. RESULTS: Using in-vivo DSI in humans we were able to demonstrate the structure of the following cerebellar neuronal circuits: (1) connections of the inferior olivary nucleus with the cerebellar cortex, and with the deep cerebellar nuclei (2) connections between the cerebellar cortex and the deep cerebellar nuclei, (3) connections of the deep cerebellar nuclei conveyed in the superior (SCP), middle (MCP) and inferior (ICP) cerebellar peduncles, (4) complex intersections of fibers in the SCP, MCP and ICP, and (5) connections between the deep cerebellar nuclei and the red nucleus and the thalamus. CONCLUSION: For the first time, we show that DSI tractography in humans in vivo is capable of revealing the structural bases of complex cerebellar networks. DSI thus appears to be a promising imaging method for characterizing anatomical disruptions that occur in cerebellar diseases, and for monitoring response to therapeutic interventions.
Resumo:
BACKGROUND: Recent clinical recommendations still propose active exercises (AE) for CNSLBP. However, acceptance of exercises by patients may be limited by pain-related manifestations. Current evidences suggest that manual therapy (MT) induces an immediate analgesic effect through neurophysiologic mechanisms at peripheral, spinal and cortical levels. The aim of this pilot study was first, to assess whether MT has an immediate analgesic effect, and second, to compare the lasting effect on functional disability of MT plus AE to sham therapy (ST) plus AE. METHODS: Forty-two CNSLBP patients without co-morbidities, randomly distributed into 2 treatment groups, received either spinal manipulation/mobilization (first intervention) plus AE (MT group; n = 22), or detuned ultrasound (first intervention) plus AE (ST group; n = 20). Eight therapeutic sessions were delivered over 4 to 8 weeks. Immediate analgesic effect was obtained by measuring pain intensity (Visual Analogue Scale) before and immediately after the first intervention of each therapeutic session. Pain intensity, disability (Oswestry Disability Index), fear-avoidance beliefs (Fear-Avoidance Beliefs Questionnaire), erector spinae and abdominal muscles endurance (Sorensen and Shirado tests) were assessed before treatment, after the 8th therapeutic session, and at 3- and 6-month follow-ups. RESULTS: Thirty-seven subjects completed the study. MT intervention induced a better immediate analgesic effect that was independent from the therapeutic session (VAS mean difference between interventions: -0.8; 95% CI: -1.2 to -0.3). Independently from time after treatment, MT + AE induced lower disability (ODI mean group difference: -7.1; 95% CI: -12.8 to -1.5) and a trend to lower pain (VAS mean group difference: -1.2; 95% CI: -2.4 to -0.30). Six months after treatment, Shirado test was better for the ST group (Shirado mean group difference: -61.6; 95% CI: -117.5 to -5.7). Insufficient evidence for group differences was found in remaining outcomes. CONCLUSIONS: This study confirmed the immediate analgesic effect of MT over ST. Followed by specific active exercises, it reduces significantly functional disability and tends to induce a larger decrease in pain intensity, compared to a control group. These results confirm the clinical relevance of MT as an appropriate treatment for CNSLBP. Its neurophysiologic mechanisms at cortical level should be investigated more thoroughly. TRIAL REGISTRATION: Trial registration number: NCT01496144.
Resumo:
Tuberculosis (TB) is a major concern in developing countries. In Brazil, few genotyping studies have been conducted to verify the number of IS6110 copies present in local prevalent strains of Mycobacterium tuberculosis, the distribution and clustering of strains. IS6110 DNA fingerprinting was performed on a sample of M. tuberculosis isolates from patients with AFB smear-positive pulmonary TB, at a hospital in Brazil. The IS6110 profiles were analyzed and compared to a M. tuberculosis database of the Houston Tuberculosis Initiative, Houston, US. Seventy-six fingerprints were obtained from 98 patients. All M. tuberculosis strains had an IS6110 copy number between 5-21 allowing for differentiation of the isolates. Human immunodeficiency virus infection was confirmed in nearly half the patients of whom data was available. Fifty-eight strains had unique patterns, while 17 strains were grouped in 7 clusters (2 to 6 strains). When compared to the HTI database, 6 strains matched isolates from El Paso, Ciudad de Juarez, Houston, and New York. Recently acquired infections were documented in 19% of cases. The community transmission of infection is intense, since some clustered strains were recovered during the four-year study period. The intercontinental dissemination of M. tuberculosis strains is suspected by demonstration of identical fingerprints in a distant country.
Functional late outgrowth endothelial progenitors isolated from peripheral blood of burned patients.
Resumo:
BACKGROUND: Bioengineered skin substitutes are increasingly considered as a useful option for the treatment of full thickness burn injury. Their viability following grafting can be enhanced by seeding the skin substitute with late outgrowth endothelial progenitor cells (EPCs). However, it is not known whether autologous EPCs can be obtained from burned patients shortly after injury. METHODS: Late outgrowth EPCs were isolated from peripheral blood sampled obtained from 10 burned patients (extent 19.6±10.3% TBSA) within the first 24h of hospital admission, and from 7 healthy subjects. Late outgrowth EPCs were phenotyped in vitro. RESULTS: In comparison with similar cells obtained from healthy subjects, growing colonies from burned patients yielded a higher percentage of EPC clones (46 versus 17%, p=0.013). Furthermore, EPCs from burned patients secreted more vascular endothelial growth factor (VEGF) into the culture medium than did their counterparts from healthy subjects (85.8±56.2 versus 17.6±14pg/mg protein, p=0.018). When injected to athymic nude mice 6h after unilateral ligation of the femoral artery, EPCs from both groups of subjects greatly accelerated the reperfusion of the ischaemic hindlimb and increased the number of vascular smooth muscle cells. CONCLUSIONS: The present study supports that, in patients with burns of moderate extension, it is feasible to obtain functional autologous late outgrowth EPCs from peripheral blood. These results constitute a strong incentive to pursue approaches based on using autotransplantation of these cells to improve the therapy of full thickness burns.
Resumo:
Angiostrongylus cantonensis, A. costaricensis, and A. vasorum are etiologic agents of human parasitic diseases. Their identification, at present, is only possible by examining the adult worm after a 40-day period following infection of vertebrate hosts with the third-stage larvae. In order to obtain a diagnostic tool to differentiate larvae and adult worm from the three referred species, polymerase chain reaction-restriction fragment length polymorphism was carried out. The rDNA second internal transcribed spacer (ITS2) and mtDNA cytochrome oxidase I regions were amplified, followed by digestion of fragments with the restriction enzymes RsaI, HapII, AluI, HaeIII, DdeI and ClaI. The enzymes RsaI and ClaI exhibited the most discriminating profiles for the differentiation of the regions COI of mtDNA and ITS2 of rDNA respectively. The methodology using such regions proved to be efficient for the specific differentiation of the three species of Angiostrongylus under study.
Resumo:
In eukaryotes, homologous recombination proteins such as RAD51 and RAD52 play crucial roles in DNA repair and genome stability. Human RAD52 is a member of a large single-strand annealing protein (SSAP) family [1] and stimulates Rad51-dependent recombination [2, 3]. In prokaryotes and phages, it has been difficult to establish the presence of RAD52 homologs with conserved sequences. Putative SSAPs were recently found in several phages that infect strains of Lactococcus lactis[4]. One of these SSAPs was identified as Sak and was found in the virulent L. lactis phage ul36, which belongs to the Siphoviridae family [4, 5]. In this study, we show that Sak is homologous to the N terminus of human RAD52. Purified Sak binds single-stranded DNA (ssDNA) preferentially over double-stranded DNA (dsDNA) and promotes the renaturation of long complementary ssDNAs. Sak also binds RecA and stimulates homologous recombination reactions. Mutations shown to modulate RAD52 DNA binding [6] affect Sak similarly. Remarkably, electron-microscopic reconstruction of Sak reveals an undecameric (11) subunit ring, similar to the crystal structure of the N-terminal fragment of human RAD52 [7, 8]. For the first time, we propose a viral homolog of RAD52 at the amino acid, phylogenic, functional, and structural levels.
Resumo:
BACKGROUND: Accurate catalogs of structural variants (SVs) in mammalian genomes are necessary to elucidate the potential mechanisms that drive SV formation and to assess their functional impact. Next generation sequencing methods for SV detection are an advance on array-based methods, but are almost exclusively limited to four basic types: deletions, insertions, inversions and copy number gains. RESULTS: By visual inspection of 100 Mbp of genome to which next generation sequence data from 17 inbred mouse strains had been aligned, we identify and interpret 21 paired-end mapping patterns, which we validate by PCR. These paired-end mapping patterns reveal a greater diversity and complexity in SVs than previously recognized. In addition, Sanger-based sequence analysis of 4,176 breakpoints at 261 SV sites reveal additional complexity at approximately a quarter of structural variants analyzed. We find micro-deletions and micro-insertions at SV breakpoints, ranging from 1 to 107 bp, and SNPs that extend breakpoint micro-homology and may catalyze SV formation. CONCLUSIONS: An integrative approach using experimental analyses to train computational SV calling is essential for the accurate resolution of the architecture of SVs. We find considerable complexity in SV formation; about a quarter of SVs in the mouse are composed of a complex mixture of deletion, insertion, inversion and copy number gain. Computational methods can be adapted to identify most paired-end mapping patterns.
Resumo:
The specific identification of Lymnaeid snails is based on a comparison of morphological characters of the shell, radula, renal and reproductive organs. However, the identification is complicated by dissection process, intra and interspecific similarity and variability of morphological characters. In the present study, polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) techniques targeted to the first and second internal transcribed spacers (ITS1 and ITS2) rDNA and to the mitochondrial 16S ribosomal gene (16S rDNAmt) were used to differentiate the species Lymnaea columella, L. viatrix, and L. diaphana from some localities of Brazil, Argentina, and Uruguay as well as to verify whether the molecular results corroborates the classical morphological method.PCR-RFLP analysis of the ITS1, ITS2, and 16S using 12 restriction enzymes revealed characteristic patterns for L. columella and L. diaphana which were concordant with the classical morphology. On the other hand, for L. viatrix populations a number of 1 to 6 profiles were generated while morphology provided the species pattern results.
Resumo:
Mycobacterium tuberculosis complex (MTBC) members are causative agents of human and animal tuberculosis. Differentiation of MTBC members is required for appropriate treatment of individual patients and for epidemiological purposes. Strains from six MTBC species - M. tuberculosis, M. bovis subsp. bovis, M. bovis BCG, M. africanum, M. pinnipedii, and "M. canetti" - were studied using gyrB-restriction fragment length polymorphism (gyrB-RFLP) analysis. A table was elaborated, based on observed restriction patterns and published gyrB sequences. To evaluate applicability of gyrB-RFLP at Instituto Adolfo Lutz, São Paulo, Mycobacterial Reference Laboratory, 311 MTBC clinical isolates, previously identified using traditional methods as M. tuberculosis (306), M. bovis (3), and M. bovis BCG (2), were analyzed by gyrB-RFLP. All isolates were correctly identified by the molecular method, but no distinction between M. bovis and M. bovis BCG was obtained. Differentiation of M. tuberculosis and M. bovis is of utmost importance, because they require different treatment schedules. In conclusion, gyrB-RFLP is accurate and easy-to-perform, with potential to reduce time needed for conventional differentiation methods. However, application for epidemiological studies remains limited, because it cannot differentiate M. tuberculosis from M. africanum subtype II, and "M. canetti", M. africanum subtype I from M. pinnipedii, and. M. bovis from M. bovis BCG.
Functional Characterization of a n NTPase Activity of the Hepatitis C Virus Nonstructural Protein 4B
Resumo:
Background: Nonstructural p rotein 4 B (NS4B) i s the m asterorganizer of hepatitis C virus (HCV) replication complexformation. It is a multispanning membrane protein that has beenreported to p ossess NTPase activity. This enzymatic functionhas been poorly studied so far and its role in the HCV life cycleis u nknown. T he present w ork-in-progress a ims at validatingand functionally c haracterizing this a ctivity a nd its r ole in t heviral life cycle.Methods: B ioinformatic analyses were performed to i dentifykey residues for site-directed mutagenesis, both in t he contextof s ubgenomic r eplicons a s well as recombinant v iruses.Mutants were investigated with respect to R NA replication andinfectious particle p roduction. In p arallel, expression andpurification of recombinant wild-type and mutant NS4B proteinsare being pursued to characterize enzymatic activity in vitro.Results: B ioinformatic a nalyses revealed t hat p redictedNTPase features are conserved only in H CV NS4B b ut n ot i nNS4B from other Flaviviridae f amily m embers. A laninesubstitutions were designed to target predicted key Walker A, Band C motifs. These substitutions affected RNA replication andinfectious virus production to v arying degrees. Optimization ofrecombinant protein production is i n progress both in b acterialas well as mammalian expression systems.Conclusions: These studies should yield new insights into thefunctions of this hitherto poorly characterized viral nonstructuralprotein and may reveal novel targets for antiviral intervention inthe future.
Resumo:
Patients who have overdosed on drugs commonly present to emergency departments, with only the most severe cases requiring intensive care unit (ICU) admission. Such patients typically survive hospitalisation. We studied their longer term functional outcomes and recovery patterns which have not been well described. All patients admitted to the 18-bed ICU of a university-affiliated teaching hospital following drug overdoses between 1 January 2004 and 31 December 2006 were identified. With ethical approval, we evaluated the functional outcome and recovery patterns of the surviving patients 31 months after presentation, by telephone or personal interview. These were recorded as Glasgow outcome score, Karnofsky performance index and present work status. During the three years studied, 43 patients were identified as being admitted to our ICU because of an overdose. The average age was 34 years, 72% were male and the mean APACHE II score was 16.7. Of these, 32 were discharged from hospital alive. Follow-up data was attained on all of them. At a median of 31 months follow-up, a further eight had died. Of the 24 surviving there were 13 unemployed, seven employed and four in custody. The median Glasgow outcome score of survivors was 4.5, their Karnofsky score 80. Admission to ICU for treatment of overdose is associated with a very high risk of death in both the short- and long-term. While excellent functional recovery is achievable, 16% of survivors were held in custody and 54% unemployed.This resource was contributed by The National Documentation Centre on Drug Use.