900 resultados para Freshwater marshes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physicochemical interactions between water, sediment and soil deeply influence the formation and development of the ecosystem. In this research, different freshwater, brackish and saline subaqueous environments of Northern Italy were chosen as study area to investigate the physicochemical processes which occur at the interface between water and sediments, as well as the effects of soil submergence on ecosystem development. In the freshwater system of the Reno river basin, the main purpose was to define the heavy metals hazard in water and sediments of natural and artificial water courses. Heavy metals partitioning and speciation allowed to assess the environmental risk linked to the critical action of dredging canal sediments, for the maintenance of the hydraulic safety of plain lands. In addition, some bioremediation techniques were experimented for protecting sediments from heavy metals contamination, and for giving an answer to the problem of sediments management. In the brackish system of S. Vitale park, the development of hydromorphic and subaqueous soils was investigated. The study of soil profiles highlighted the presence of a soil continuum among pedons subjected to different saturation degrees. This investigation allowed to the identification of both morphological and physicochemical indicators, which characterize the formation of subaqueous soils and describe the soil hydromorphism in transitional soil systems. In the saline system of Grado lagoon, an ecosystem approach was used to define the role of water oscillation in soil characterization and plants colonization. This study highlighted the close relationship and the mutual influence of soil submergence and aeration, tide oscillation and vegetation cover, on the soil development. In view of climate change, this study contribute to understand and suppose how soil and landscape could evolve. However, a complete evaluation of hydromorphic soil functionality will be achieved only involving physiological and biochemical expertise in these kind of studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhogocytes, also termed ‘pore cells’, exist free in the hemolymph or embedded in the connective tissue of different body parts of molluscs, notably gastropods. These unique cells can be round, elongated or irregularly shaped, and up to 30 μm in diameter. Their hallmark is the so-called slit apparatus: i.e. pocket-like invaginations of the plasma membrane creating extracellular lacunae, bridged by cytoplasmic bars. These bars form distinctive slits of ca. 20 nm width. A slit diaphragm composed of proteins establishes a molecular sieve with holes of 20 x 20 nm. Different functions have been assigned to this special molluscan cell type, notably biosynthesis of the hemolymph respiratory protein hemocyanin. It has further been proposed, but not proven, that in the case of red-blooded snail species rhogocytes might synthesize the hemoglobin. However, the secretion pathway of these hemolymph proteins, and the functional role of the enigmatic slit apparatus remained unclear. Additionally proposed functions of rhogocytes, such as heavy metal detoxification or hemolymph protein degradation, are also not well studied. This work provides more detailed electron microscopical, histological and immunobiochemical information on the structure and function of rhogocytes of the freshwater snails Biomphalaria glabrata and Lymnaea stagnalis. By in situ hybridization on mantle tissues, it proves that B. glabrata rhogocytes synthesize hemoglobin and L. stagnalis rhogocytes synthesize hemocyanin. Hemocyanin is present, in endoplasmic reticulum lacunae and in vesicles, as individual molecules or pseudo-crystalline arrays. The first 3D reconstructions of rhogocytes are provided by means of electron tomography and show unprecedented details of the slit apparatus. A highly dense material in the cytoplasmic bars close to the diaphragmatic slits was shown, by immunogold labeling, to contain actin. By immunofluorescence microscopy, the protein nephrin was localized at the periphery of rhogocytes. The presence of both proteins in the slit apparatus supports the previous hypothesis, hitherto solely based on similarities of the ultrastructure, that the molluscan rhogocytes are phylogenetically related to mammalian podocytes and insect nephrocytes. A possible secretion pathway of respiratory proteins that includes a transfer mechanism of vesicles through the diaphragmatic slits is proposed and discussed. We also studied, by electron microscopy, the reaction of rhogocytes in situ to two forms of animal stress: deprivation of food and cadmium contamination of the tank water. Significant cellular reactions to both stressors were observed and documented. Notably, the slit apparatus surface and the number of electron-dense cytoplasmic vesicles increased in response to cadmium stress. Food deprivation led to an increase in hemocyanin production. These observations are also discussed in the framework of using such animals as potential environmental biomarkers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salt marshes are coastal ecosystem in the upper intertidal zone between internal water and sea and are widely spread throughout Italy, from Friuli Venezia Giulia, in the North, to Sicily, in the South. These delicate environments are threatened by eutrophication, habitat conversion (for land reclaiming or agriculture) and climate change impacts such as sea level rise. The objectives of my thesis were to: 1) analyse the distribution and biomass of the perennial native cordgrass Spartina maritima (one of the most relevant foundation species in the low intertidal saltmarsh vegetation in the study region) at 7 sites along the Northern Adriatic coast and relate it to critical environmental parameters and 2) to carry out a nutrient manipulation experiment to detect nutrient enrichment effects on S. maritima biomass and vegetation characteristics. The survey showed significant differences among sites in biological response variables - i.e., live belowground, live aboveground biomass, above:belowground (R:S) biomass ratio, % cover, average height and stem density – which were mainly related to differences in nitrate, nitrite and phosphate contents in surface water. Preliminary results from the experiment (which is still ongoing) showed so far no significant effects of nutrient enrichment on live aboveground and belowground biomass, R:S ratio, leaf %Carbon, average height, stem density and random shoot height; however, a significantly higher (P=0.018) increase in leaf %Nitrogen content in treated plots indicated that nutrient uptake had occurred.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquatic species can experience different selective pressures on morphology in different flow regimes. Species inhabiting lotic regimes often adapt to these conditions by evolving low-drag (i.e., streamlined) morphologies that reduce the likelihood of dislodgment or displacement. However, hydrodynamic factors are not the only selective pressures influencing organismal morphology and shapes well suited to flow conditions may compromise performance in other roles. We investigated the possibility of morphological trade-offs in the turtle Pseudemys concinna. Individuals living in lotic environments have flatter, more streamlined shells than those living in lentic environments; however, this flatter shape may also make the shells less capable of resisting predator-induced loads. We tested the idea that ‘‘lotic’’ shell shapes are weaker than ‘‘lentic’’ shell shapes, concomitantly examining effects of sex. Geometric morphometric data were used to transform an existing finite element shell model into a series of models corresponding to the shapes of individual turtles. Models were assigned identical material properties and loaded under identical conditions, and the stresses produced by a series of eight loads were extracted to describe the strength of the shells. ‘‘Lotic’’ shell shapes produced significantly higher stresses than ‘‘lentic’’ shell shapes, indicating that the former is weaker than the latter. Females had significantly stronger shell shapes than males, although these differences were less consistent than differences between flow regimes. We conclude that, despite the potential for many-to-one mapping of shell shape onto strength, P. concinna experiences a trade-off in shell shape between hydrodynamic and mechanical performance. This trade-off may be evident in many other turtle species or any other aquatic species that also depend on a shell for defense. However, evolution of body size may provide an avenue of escape from this trade-off in some cases, as changes in size can drastically affect mechanical performance while having little effect on hydrodynamic performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gill disease in salmonids is characterized by a multifactorial aetiology. Epitheliocystis of the gill lamellae caused by obligate intracellular bacteria of the order Chlamydiales is one known factor; however, their diversity has greatly complicated analyses to establish a causal relationship. In addition, tracing infections to a potential environmental source is currently impossible. In this study, we address these questions by investigating a wild brown trout (Salmo trutta) population from seven different sites within a Swiss river system. One age class of fish was followed over 18 months. Epitheliocystis occurred in a site-specific pattern, associated with peak water temperatures during summer months. No evidence of a persistent infection was found within the brown trout population, implying an as yet unknown environmental source. For the first time, we detected 'Candidatus Piscichlamydia salmonis' and 'Candidatus Clavochlamydia salmonicola' infections in the same salmonid population, including dual infections within the same fish. These organisms are strongly implicated in gill disease of caged Atlantic salmon in Norway and Ireland. The absence of aquaculture production within this river system and the distance from the sea, suggests a freshwater origin for both these bacteria and offers new possibilities to explore their ecology free from aquaculture influences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a cost-efficient climate model, the effect of changes in overturning circulation on neodymium isotopic composition,ϵNd, is systematically examined for the first time. Idealized sequences of abrupt climate changes are induced by the application of periodic freshwater fluxes to the North Atlantic (NA) and the Southern Ocean (SO), thus mainly affecting either the formation of North Atlantic Deep Water (NADW) or Antarctic Bottom Water (AABW). Variations in ϵNd reflect weakening and strengthening of the formation of NADW and AABW, changes in ϵNdof end-members are relatively small. Relationships betweenϵNd and the strength of NADW or AABW are more pronounced for AABW than for NADW. Atlantic patterns of variations in ϵNd systematically differ between NA and SO experiments. Additionally, the signature of changes in ϵNd in the Atlantic and the Pacific is alike in NA but opposite in SO experiments. Discrimination between NA and SO experiments is therefore possible based on the Atlantic pattern of variations in ϵNd and the contrariwise behavior of ϵNd in the Atlantic and the Pacific. In further experiments we examined the effect of variations in magnitudes of particle export fluxes. Within the examined range, and although settling particles represent the only sink of Nd, their effects on ϵNd are relatively small. Our results confirm the large potential of ϵNd as a paleocirculation tracer but also indicate its limitations of quantitative reconstructions of changes in the Atlantic Meridional Ocean Circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gram-negative, aerobic, motile, rod-shaped bacteria were isolated from the intestines of freshwater fish on two separate occasions. Colonies of both strains, JF3835(T) and JF4413, produced non-diffusible green pigment following 4-5 days incubation on Luria-Bertani agar. The most abundant fatty acids were summed feature 3 (comprising C(16 : 1)ω7c and/or C(15 : 0) iso 2-OH), C(16 : 0) and C(18 : 1)ω7c. The DNA G+C content was 62.9 mol%. Sequence analysis of the 16S rRNA gene indicated 100 % sequence similarity between the two strains. In comparison with recognized species, the new strains exhibited the greatest degree of sequence similarity with members of the Pseudomonas chlororaphis subspecies: P. chlororaphis subsp. chlororaphis (99.84 %), P. chlororaphis subsp. aurantiaca (99.75 %) and P. chlororaphis subsp. aureofaciens (99.40 %). While DNA-DNA relatedness confirmed the placement of strains JF3835(T) and JF4413 as members of the species P. chlororaphis, multilocus sequencing indicated that the strains formed a distinct cluster within it. On the basis of genotypic and phenotypic evidence, strains JF3835(T) and JF4413 represent a novel subspecies of the species P. chlororaphis, for which the name Pseudomonas chlororaphis subsp. piscium subsp. nov. is proposed. The type strain is JF3835(T) (=NCIMB 14478(T)=DSM 21509(T)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cape Verdean islands form a distinct aquatic freshwater ecoregion characterized mainly by temporal water bodies with an adapted invertebrate community. Freshwater fish were not previously recorded from the archipelago. During a non-exhaustive survey of freshwater bodies on five islands of the archipelago, the first presence of a freshwater fish was recorded. Using barcoding sequences, the species was identified as the guppy (Poecilia reticulata), a highly invasive species alien to the Cape Verdean Islands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cryptic species, i.e. species that are morphologically hard to distinguish, have been detected repeatedly in various taxa and ecosystems. In order to evaluate the importance of this finding, we have to know in how far cryptic species differ in various aspects of their biology. The amphipod Gammarus fossarum is a key invertebrate in freshwater streams and contains several cryptic species. We examined the population genetic structure, genetic diversity and demographic history of two of them (type A and type B) using microsatellite markers and asked whether they show significant differences. We present results of population genetic analyses based on a total of 37 populations from the headwaters of two major European drainages, Rhine and Rhone. We found that, in both species, genetic diversity was geographically structured among and within drainages. For type A in the Rhine and type B in the Rhone, we detected significant patterns of isolation by distance. The increase of genetic differentiation with geographical distance, however, was much higher in type A than in type B. This result indicates substantial interspecific differences in population history and/or the extent of current gene flow between populations. In the Rhine, type B does not show evidence of isolation by distance, and population differentiation is relatively low across hundreds of kilometres. The majority of these populations also show signatures of recent bottlenecks. These patterns are consistent with a recent expansion of type B into the Rhine drainage. In summary, our results suggest considerable and previously unrecognized interspecific differences in the genetic structure of these cryptic keystone species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For low-energy organisms such as bivalves, the costs of thermal compensation of biological rates (synonymous with acclimation or acclimatization) may be higher than the benefits. We therefore conducted two experiments to examine the effect of seasonal temperature changes on behaviour and oxygen consumption. In the first experiment, we examined the effects of seasonal temperature changes on the freshwater bivalve Anodonta anatina, taking measurements each month for a year at the corresponding temperature for that time of year. There was no evidence for compensation of burrowing valve closure duration or frequency, or locomotory speed. In the second experiment, we compared A. anatina at summer and winter temperatures (24 and 4°C, respectively) and found no evidence for compensation of the burrowing rate, valve closure duration or frequency, or oxygen consumption rates during burrowing, immediately after valve closure or at rest. Within the experimental limits of this study, the evidence suggests that thermal compensation of biological rates is not a strategy employed by A. anatina. We argue that this is due to either a lack of evolutionary pressure to acclimatize, or evolutionary pressure to not acclimatize. Firstly, there is little incentive to increase metabolic rate to enhance predatory ability given that these are filter feeders. Secondly, maintained low energetic demand, enhanced at winter temperatures, is essential for predator avoidance, i.e. valve closure. Thus, we suggest that the costs of acclimatization outweigh the benefits in A. anatina.