968 resultados para Flow simulation
Resumo:
In order to understand the earthquake nucleation process, we need to understand the effective frictional behavior of faults with complex geometry and fault gouge zones. One important aspect of this is the interaction between the friction law governing the behavior of the fault on the microscopic level and the resulting macroscopic behavior of the fault zone. Numerical simulations offer a possibility to investigate the behavior of faults on many different scales and thus provide a means to gain insight into fault zone dynamics on scales which are not accessible to laboratory experiments. Numerical experiments have been performed to investigate the influence of the geometric configuration of faults with a rate- and state-dependent friction at the particle contacts on the effective frictional behavior of these faults. The numerical experiments are designed to be similar to laboratory experiments by DIETERICH and KILGORE (1994) in which a slide-hold-slide cycle was performed between two blocks of material and the resulting peak friction was plotted vs. holding time. Simulations with a flat fault without a fault gouge have been performed to verify the implementation. These have shown close agreement with comparable laboratory experiments. The simulations performed with a fault containing fault gouge have demonstrated a strong dependence of the critical slip distance D-c on the roughness of the fault surfaces and are in qualitative agreement with laboratory experiments.
Resumo:
Solid earth simulations have recently been developed to address issues such as natural disasters, global environmental destruction and the conservation of natural resources. The simulation of solid earth phenomena involves the analysis of complex structures including strata, faults, and heterogeneous material properties. Simulation of the generation and cycle of earthquakes is particularly important, but such simulations require the analysis of complex fault dynamics. GeoFEM is a parallel finite-element analysis system intended for solid earth field phenomena problems. This paper describes recent development in the GeoFEM project for the simulation of earthquake generation and cycles.
Resumo:
A long-term experiment was conducted to compare the effects of flowing and still water on growth, and the relationship between water flow and nutrients, in Aponogeton elongatus, a submerged aquatic macrophyte. A. elongatus plants were grown for 23 weeks with three levels of nutrition (0, 0.5 and 1g Osmocote Plus(R) fertiliser pot(-1)) in aquaria containing stirred or unstirred water. Fertilized plants grew much better than non-fertilized. The highest fertilizer level produced 29% wider leaves and 58% higher total dry weight in stirred water. Stirred water increased leaf area by 40% and tuber size by 81%, but only with the highest level of nutrition. These results suggest that this plant depends on its roots for mineral uptake, rather than from the open water, and the major limitation to growth in still water is the supply of dissolved inorganic carbon. It was the combined effects of nutrient availability and stirring that produced the strongest response in plant growth, morphology and composition. This study provides some explanation for the observations of others that these plants grow best in creeks or river systems with permanently flowing water.
Resumo:
The Agricultural Production Systems Simulator (APSIM) is a modular modelling framework that has been developed by the Agricultural Production Systems Research Unit in Australia. APSIM was developed to simulate biophysical process in farming systems, in particular where there is interest in the economic and ecological outcomes of management practice in the face of climatic risk. The paper outlines APSIM's structure and provides details of the concepts behind the different plant, soil and management modules. These modules include a diverse range of crops, pastures and trees, soil processes including water balance, N and P transformations, soil pH, erosion and a full range of management controls. Reports of APSIM testing in a diverse range of systems and environments are summarised. An example of model performance in a long-term cropping systems trial is provided. APSIM has been used in a broad range of applications, including support for on-farm decision making, farming systems design for production or resource management objectives, assessment of the value of seasonal climate forecasting, analysis of supply chain issues in agribusiness activities, development of waste management guidelines, risk assessment for government policy making and as a guide to research and education activity. An extensive citation list for these model testing and application studies is provided. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
The PFC3D (particle flow code) that models the movement and interaction of particles by the DEM techniques was employed to simulate the particle movement and to calculate the velocity and energy distribution of collision in two types of impact crusher: the Canica vertical shaft crusher and the BJD horizontal shaft swing hammer mill. The distribution of collision energies was then converted into a product size distribution for a particular ore type using JKMRC impact breakage test data. Experimental data of the Canica VSI crusher treating quarry and the BJD hammer mill treating coal were used to verify the DEM simulation results. Upon the DEM procedures being validated, a detailed simulation study was conducted to investigate the effects of the machine design and operational conditions on velocity and energy distributions of collision inside the milling chamber and on the particle breakage behaviour. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Pulp lifters, also known, as pan lifters are an integral part of the majority of autogenous (AG), semi-autogenous (SAG) and grate discharge ball mills. The performance of the pulp lifters in conjunction with grate design determines the ultimate flow capacity of these mills. Although the function of the pulp lifters is simply to transport the slurry passed through the discharge grate into the discharge trunnion, their performance depends on their design as well as that of the grate and operating conditions such as mill speed and charge level. However, little or no work has been reported on the performance of grate-pulp lifter assemblies and in particular the influence of pulp lifter design on slurry transport. Ideally, the discharge rate through a grate-pulp lifter assembly should be equal to the discharge rate through at a given mill hold-up. However, the results obtained have shown that conventional pulp lifter designs cause considerable restrictions to flow resulting in reduced flow capacity. In this second of a two-part series of papers the performance of conventional pulp lifters (radial and spiral designs) is described and is based on extensive test work carried out in a I m diameter pilot SAG mill. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Discharge grates play an important role in determining the performance of autogenous, semi-autogenous and grate discharge ball mills. The flow capacity (grinding capacity) of these mills is strongly influenced by the discharge grate design-open area and position of apertures, as well as the performance of the pulp lifters. As mill sizes have progressively increased and closed-circuiting has become more popular the importance of grate and pulp lifter design has grown. Unfortunately very few studies have concentrated on this aspect of mill performance. To remedy this a series of laboratory and pilot-scale tests were undertaken to study both the performance of grates on their own and in conjunction with pulp lifters. In this first paper of a two-part series the results from the grate-only experiments are presented and discussed, whilst the performance of the grate-pulp-lifter system is covered in the second paper. The results from the grate-only experiments have shown that the build-up of slurry (hold-up) inside the mill starts from the shoulder of the charge, while the toe position of the slurry progressively moves towards the toe of the charge with increasing flowrate. Besides grate design (open area and position of apertures), charge volume and mill speed were also found to have a strong influence on mill hold-up and interact with grate design variables. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Today, the standard approach for the kinetic analysis of dynamic PET studies is compartment models, in which the tracer and its metabolites are confined to a few well-mixed compartments. We examine whether the standard model is suitable for modern PET data or whether theories including more physiologic realism can advance the interpretation of dynamic PET data. A more detailed microvascular theory is developed for intravascular tracers in single-capillary and multiple-capillary systems. The microvascular models, which account for concentration gradients in capillaries, are validated and compared with the standard model in a pig liver study. Methods: Eight pigs underwent a 5-min dynamic PET study after O-15-carbon monoxide inhalation. Throughout each experiment, hepatic arterial blood and portal venous blood were sampled, and flow was measured with transit-time flow meters. The hepatic dual-inlet concentration was calculated as the flow-weighted inlet concentration. Dynamic PET data were analyzed with a traditional single-compartment model and 2 microvascular models. Results: Microvascular models provided a better fit of the tissue activity of an intravascular tracer than did the compartment model. In particular, the early dynamic phase after a tracer bolus injection was much improved. The regional hepatic blood flow estimates provided by the microvascular models (1.3 +/- 0.3 mL min(-1) mL(-1) for the single-capillary model and 1.14 +/- 0.14 min(-1) mL(-1) for the multiple-capillary model) (mean +/- SEM mL of blood min(-1) mL of liver tissue(-1)) were in agreement with the total blood flow measured by flow meters and normalized to liver weight (1.03 +/- 0.12 mL min(-1) mL(-1)). Conclusion: Compared with the standard compartment model, the 2 microvascular models provide a superior description of tissue activity after an intravascular tracer bolus injection. The microvascular models include only parameters with a clear-cut physiologic interpretation and are applicable to capillary beds in any organ. In this study, the microvascular models were validated for the liver and provided quantitative regional flow estimates in agreement with flow measurements.
Resumo:
Predictions of flow patterns in a 600-mm scale model SAG mill made using four classes of discrete element method (DEM) models are compared to experimental photographs. The accuracy of the various models is assessed using quantitative data on shoulder, toe and vortex center positions taken from ensembles of both experimental and simulation results. These detailed comparisons reveal the strengths and weaknesses of the various models for simulating mills and allow the effect of different modelling assumptions to be quantitatively evaluated. In particular, very close agreement is demonstrated between the full 3D model (including the end wall effects) and the experiments. It is also demonstrated that the traditional two-dimensional circular particle DEM model under-predicts the shoulder, toe and vortex center positions and the power draw by around 10 degrees. The effect of particle shape and the dimensionality of the model are also assessed, with particle shape predominantly affecting the shoulder position while the dimensionality of the model affects mainly the toe position. Crown Copyright (C) 2003 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Heat transfer levels have been investigated behind a rearward-facing step in a superorbital expansion tube. The heat transfer was measured along a flat plate and behind 2 and 3mm steps with the same length to step height ratio. Results were obtained with air as the test gas at speeds of 6.76kms(-1) and 9-60kms(-1) corresponding to stagnation enthalpies of 26MJ/kg and 48MJ/kg respectively. A laminar boundary layer was established on the flat plate and measured heat transfer levels were consistent with classical empirical correlations. In the case of flow behind a step, the measurements showed a gradual rise in heat transfer from the rear of the step to a plateau several step heights downstream for both flow conditions. Reattachment distance was estimated to be approximately 1.6 step heights downstream of the 2mm step at the low enthalpy condition through the use of flow visualisation.
Resumo:
Nielsen and Perrochet [Adv. Water Resour. 23 (2000) 503] presented experimental data for cyclic water movement in the vadose zone above an oscillating watertable. The response of the watertable to cyclic forcing was characterised by the ratios of the forcing head to watertable amplitudes and their associated phase lag. They found that their non-hysteretic Richards' equation model failed to represent the observed behaviour of these parameters. This paper explores the effect on the simulated capillary fringe dynamics (in terms of these parameters) of including varying degrees of hysteresis in the moisture retention curve used in a numerical model of their experiment. It is clear that hysteresis can indeed account for observed discrepancies between simulation and experiment and that the effect of hysteresis varies with the frequency of oscillation. The use of a single-valued mean retention curve, as advocated by some authors, fails to provide a match between the simulated and observed behaviour of the Nielsen and Perrochet parameters, but is shown to be adequate for predicting time-averaged soil moisture profiles. (C) 2003 Elsevier Ltd. All rights reserved.
Stability and simulation-based design of steel scaffolding without using the effective length method
Resumo:
For dynamic simulations to be credible, verification of the computer code must be an integral part of the modelling process. This two-part paper describes a novel approach to verification through program testing and debugging. In Part 1, a methodology is presented for detecting and isolating coding errors using back-to-back testing. Residuals are generated by comparing the output of two independent implementations, in response to identical inputs. The key feature of the methodology is that a specially modified observer is created using one of the implementations, so as to impose an error-dependent structure on these residuals. Each error can be associated with a fixed and known subspace, permitting errors to be isolated to specific equations in the code. It is shown that the geometric properties extend to multiple errors in either one of the two implementations. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
In Part 1 of this paper a methodology for back-to-back testing of simulation software was described. Residuals with error-dependent geometric properties were generated. A set of potential coding errors was enumerated, along with a corresponding set of feature matrices, which describe the geometric properties imposed on the residuals by each of the errors. In this part of the paper, an algorithm is developed to isolate the coding errors present by analysing the residuals. A set of errors is isolated when the subspace spanned by their combined feature matrices corresponds to that of the residuals. Individual feature matrices are compared to the residuals and classified as 'definite', 'possible' or 'impossible'. The status of 'possible' errors is resolved using a dynamic subset testing algorithm. To demonstrate and validate the testing methodology presented in Part 1 and the isolation algorithm presented in Part 2, a case study is presented using a model for biological wastewater treatment. Both single and simultaneous errors that are deliberately introduced into the simulation code are correctly detected and isolated. Copyright (C) 2003 John Wiley Sons, Ltd.