975 resultados para Fields
Resumo:
Biological control of Diatraea saccharalis is regarded as one of the best examples of successful classical biological control in Brazil. Since the introduction of the exotic parasitoid, Cotesia flavipes, from Pakistan at the beginning of the 1970s, decrease in D. saccharalis infestation in sugarcane fields has been attributed to the effectiveness of this agent. Recently, the native Tachinidae fly parasitoids (Lydella minense and Paratheresia claripalpis) have also been implicated in this success. However, quantitative data confirming the actual contribution of these agents to the control of D. saccharalis are rather limited. The purpose of this study was to investigate the dynamics of the interactions between D. saccharalis and its parasitoids, emphasizing the temporal patterns of parasitism. To investigate this question, a large data set comprising information collected from two sugarcane mills located in the state of São Paulo, Brazil (Barra and Sao Joao sugarcane mills), was analysed. Basically, the data set contained monthly information about the number of D. saccharalis larvae and their parasitoids in each sample (man-hour per sample), the sugarcane varieties cultivated, the age of the sugarcane plants (only at the Sao Joao sugarcane mill) as well as the sugarcane cut at sampling time. The data were collected from March 1984 to March 1997 and from May 1982 to December 1996 for the Barra and Sao Joao sugarcane mills, respectively. Temporal inverse density-dependent parasitism was predominant for both parasitoid species with respect to all spatial scales. Although the temporal pattern of parasitism was not directly density dependent, it was evident that the tachinids and C. flavipes presented positive numerical responses according to variations in D. saccharalis densities through time.
Resumo:
In this work we study the behavior of charged particles immersed in a peculiar configuration of magnetic fields, which has a main constant field B(0) and a superimposed, transversal perturbation field B(1) sin(omega(p)t), with B(1) << B(0). By taking Cartesian coordinates and placing B(0) along the z axis and B(1) sin (omega(p)t) on the x axis, an analytical solution for y(t) may be obtained by solving an integrodifferential equation. Besides, the solution z(t) also exhibits a very interesting dynamics, and the entire system is conditioned by resonances between the particle orbit frequencies and the frequency of the magnetic transversal perturbation, omega(p). In this work we also discuss numerical simulations for the related particle trajectories, as well as potential applications in the context of separation phenomena.
Resumo:
We study a class of quadratic reversible polynomial vector fields on S-2. We classify all the centers of this class of vector fields and we characterize its global phase portrait. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Let p be a prime number. A formula for the minimum absolute value of the discriminant of all Abelian extensions of Q of degree p(2) is given in terms of p.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The nonequilibrium effective equation of motion for a scalar background field in a thermal bath is studied numerically. This equation emerges from a microscopic quantum field theory derivation and it is suitable to a Langevin simulation on the lattice. Results for both the symmetric and broken phases are presented.
Resumo:
We show that there exists a duality between the local coordinates and the solutions of the Klein-Gerdon equation in curved spacetime in the same sense as in the Minkowski spacetime. However, the duality in curved spacetime does not have the same generality as in flat spacetime and it holds only if the system satisfies certain constraints. We derive these constraints and the basic equations of duality and discuss the implications in the quantum theory. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
We consider massive spin 1 fields, in Riemann-Cartan space-times, described by Duffin-Kemmer-Petiau theory. We show that this approach induces a coupling between the spin 1 field and the space-time torsion which breaks the usual equivalence with the Proca theory, but that such equivalence is preserved in the context of the Teleparallel Equivalent of General Relativity.
Resumo:
In reply to the criticism made by Mielke in the preceding Comment on our recent paper, we once again explicitly demonstrate the inconsistency of the coupling of a Dirac field to gravitation in the teleparallel equivalent of general relativity. Moreover, we stress that the mentioned inconsistency is generic for all sources with spin and is by no means restricted to the Dirac field. In this sense the SL(4,R)-covariant generalization of the spinor fields in the teleparallel gravity theory is irrelevant to the inconsistency problem.
Resumo:
We study massless Duffin-Kemmer-Petiau (DKP) fields in the context of Einstein-Cartan gravitation theory, interacting via minimal coupling procedure. In the case of an identically vanishing torsion (Riemannian spacetimes) we show that there exist local gauge symmetries which reproduce the usual gauge symmetries for the massless scalar and electromagnetic fields. on the other hand, similarly to what happens with the Maxwell theory, a nonvanishing torsion, in general, breaks the usual U(1) local gauge symmetry of the electromagnetic field or, from a different point of view, imposes conditions on the torsion.
Resumo:
We use the duality between the local Cartezian coordinates and the solutions of the Klein-Gordon equation to parametrize locally the spacetime in terms of wave functions and prepotentials. The components of metric, metric connection, curvature as well as the Einstein equation are given in this parametrization. We also discuss the local duality between coordinates and quantum fields and the metric in this later reparametrization. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Dual-helicity eigenspinors of the charge conjugation operator [eigenspinoren des ladungskonjugationsoperators (ELKO) spinor fields] belong-together with Majorana spinor fields-to a wider class of spinor fields, the so-called flagpole spinor fields, corresponding to the class (5), according to Lounesto spinor field classification based on the relations and values taken by their associated bilinear covariants. There exists only six such disjoint classes: the first three corresponding to Dirac spinor fields, and the other three, respectively, corresponding to flagpole, flag-dipole, and Weyl spinor fields. This paper is devoted to investigate and provide the necessary and sufficient conditions to map Dirac spinor fields to ELKO, in order to naturally extend the standard model to spinor fields possessing mass dimension 1. As ELKO is a prime candidate to describe dark matter, an adequate and necessary formalism is introduced and developed here, to better understand the algebraic, geometric, and physical properties of ELKO spinor fields, and their underlying relationship to Dirac spinor fields. (c) 2007 American Institute of Physics.
Resumo:
Here we study the behaviour of the spin 0 sector of the DKP field in spaces with torsion. First we show that in a Riemann-Cartan manifold the DKP field presents an interaction with torsion when minimal coupling is performed, contrary to the behaviour of the KO field, a result that breaks the usual equivalence between the DKP and the KG fields.Next we analyse the case of the Teleparallel Equivalent of General Relativity (Weitzenbock manifold), showing that in this case there is a perfect agreement between KG and DKP fields. The origins of both results are also discussed.
Resumo:
We investigate the possible decay of protons in geodesic circular motion around neutral compact objects. Weak and strong decay rates and the associated emitted powers are calculated using a semiclassical approach. Our results are discussed with respect to distinct ones in the literature, which consider the decay of accelerated protons in electromagnetic fields. A number of consistency checks are presented along the paper.