991 resultados para Far Field Pattern


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free field and twisted parafermionic representations of twisted su(3)(k)((2)) current algebra are obtained. The corresponding twisted Sugawara energy-momentum tensor is given in terms of three (beta, gamma) pairs and two scalar fields and also in terms of twisted parafermionic currents and one scalar field. Two screening currents of the first kind are presented in terms of the free fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field quantization in unstable optical systems is treated by expanding the vector potential in terms of non-Hermitean (Fox-Li) modes. We define non-Hermitean modes and their adjoints in both the cavity and external regions and make use of the important bi-orthogonality relationships that exist within each mode set. We employ a standard canonical quantization procedure involving the introduction of generalized coordinates and momenta for the electromagnetic (EM) field. Three-dimensional systems are treated, making use of the paraxial and monochromaticity approximations for the cavity non-Hermitean modes. We show that the quantum EM field is equivalent to a set of quantum harmonic oscillators (QHOs), associated with either the cavity or the external region non-Hermitean modes, and thus confirming the validity of the photon model in unstable optical systems. Unlike in the conventional (Hermitean mode) case, the annihilation and creation operators we define for each QHO are not Hermitean adjoints. It is shown that the quantum Hamiltonian for the EM field is the sum of non-commuting cavity and external region contributions, each of which can be expressed as a sum of independent QHO Hamiltonians for each non-Hermitean mode, except that the external field Hamiltonian also includes a coupling term responsible for external non-Hermitean mode photon exchange processes. The non-commutativity of certain cavity and external region annihilation and creation operators is associated with cavity energy gain and loss processes, and may be described in terms of surface integrals involving cavity and external region non-Hermitean mode functions on the cavity-external region boundary. Using the essential states approach and the rotating wave approximation, our results are applied to the spontaneous decay of a two-level atom inside an unstable cavity. We find that atomic transitions leading to cavity non-Hermitean mode photon absorption are associated with a different coupling constant to that for transitions leading to photon emission, a feature consequent on the use of non-Hermitean mode functions. We show that under certain conditions the spontaneous decay rate is enhanced by the Petermann factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As discussed in the preceding paper [Wiseman and Vaccaro, preceding paper, Phys. Rev. A 65, 043605 (2002)], the stationary state of an optical or atom laser far above threshold is a mixture of coherent field states with random phase, or, equivalently, a Poissonian mixture of number states. We are interested in which, if either, of these descriptions of rho(ss) as a stationary ensemble of pure states, is more natural. In the preceding paper we concentrated upon the question of whether descriptions such as these are physically realizable (PR). In this paper we investigate another relevant aspect of these ensembles, their robustness. A robust ensemble is one for which the pure states that comprise it survive relatively unchanged for a long time under the system evolution. We determine numerically the most robust ensembles as a function of the parameters in the laser model: the self-energy chi of the bosons in the laser mode, and the excess phase noise nu. We find that these most robust ensembles are PR ensembles, or similar to PR ensembles, for all values of these parameters. In the ideal laser limit (nu=chi=0), the most robust states are coherent states. As the phase noise or phase dispersion is increased through nu or the self-interaction of the bosons chi, respectively, the most robust states become more and more amplitude squeezed. We find scaling laws for these states, and give analytical derivations for them. As the phase diffusion or dispersion becomes so large that the laser output is no longer quantum coherent, the most robust states become so squeezed that they cease to have a well-defined coherent amplitude. That is, the quantum coherence of the laser output is manifest in the most robust PR ensemble being an ensemble of states with a well-defined coherent amplitude. This lends support to our approach of regarding robust PR ensembles as the most natural description of the state of the laser mode. It also has interesting implications for atom lasers in particular, for which phase dispersion due to self-interactions is expected to be large.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A laser, be it an optical laser or an atom laser, is an open quantum system that produces a coherent beam of bosons (photons or atoms, respectively). Far above threshold, the stationary state rho(ss) of the laser mode is a mixture of coherent-field states with random phase, or, equivalently, a Poissonian mixture of number states. This paper answers the question: can descriptions such as these, of rho(ss) as a stationary ensemble of pure states, be physically realized? Here physical realization is as defined previously by us [H. M. Wiseman and J. A. Vaccaro, Phys. Lett. A 250, 241 (1998)]: an ensemble of pure states for a particular system can be physically realized if, without changing the dynamics of the system, an experimenter can (in principle) know at any time that the system is in one of the pure-state members of the ensemble. Such knowledge can be obtained by monitoring the baths to which the system is coupled, provided that coupling is describable by a Markovian master equation. Using a family of master equations for the (atom) laser, we solve for the physically realizable (PR) ensembles. We find that for any finite self-energy chi of the bosons in the laser mode, the coherent-state ensemble is not PR; the closest one can come to it is an ensemble of squeezed states. This is particularly relevant for atom lasers, where the self-energy arising from elastic collisions is expected to be large. By contrast, the number-state ensemble is always PR. As the self-energy chi increases, the states in the PR ensemble closest to the coherent-state ensemble become increasingly squeezed. Nevertheless, there are values of chi for which states with well-defined coherent amplitudes are PR, even though the atom laser is not coherent (in the sense of having a Bose-degenerate output). We discuss the physical significance of this anomaly in terms of conditional coherence (and hence conditional Bose degeneracy).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The principal malaria vector in the Philippines, Anopheles flavirostris (Ludlow) (Diptera: Culicidae), is regarded as 'shade-loving' for its breeding sites, i.e. larval habitats. This long-standing belief, based on circumstantial observations rather than ecological analysis, has guided larval control methods such as 'stream-clearing' or the removal of riparian vegetation, to reduce the local abundance of An. flavirostris . We measured the distribution and abundance of An. flavirostris larvae in relation to canopy vegetation cover along a stream in Quezon Province, the Philippines. Estimates of canopy openness and light measurements were obtained by an approximation method that used simplified assumptions about the sun, and by hemispherical photographs analysed using the program hemiphot(C) . The location of larvae, shade and other landscape features was incorporated into a geographical information system (GIS) analysis. Early larval instars of An. flavirostris were found to be clustered and more often present in shadier sites, whereas abundance was higher in sunnier sites. For later instars, distribution was more evenly dispersed and only weakly related to shade. The best predictor of late-instar larvae was the density of early instars. Distribution and abundance of larvae were related over time (24 days). This pattern indicates favoured areas for oviposition and adult emergence, and may be predictable. Canopy measurements by the approximation method correlated better with larval abundance than hemispherical photography, being economical and practical for field use. Whereas shade or shade-related factors apparently have effects on larval distribution of An. flavirostris , they do not explain it completely. Until more is known about the bionomics of this vector and the efficacy and environmental effects of stream-clearing, we recommend caution in the use of this larval control method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the possibility that the electrons injected into organic field-effect transistors are strongly correlated. A single layer of acenes can be modeled by a Hubbard Hamiltonian similar to that used for the κ-(BEDT-TTF)2X family of organic superconductors. The injected electrons do not necessarily undergo a transition to a Mott insulator state as they would in bulk crystals when the system is half-filled. We calculate the fillings needed for obtaining insulating states in the framework of the slave-boson theory and in the limit of large Hubbard repulsion U. We also suggest that these Mott states are unstable above some critical interlayer coupling or long-range Coulomb interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new class of bilinear permutation polynomials was recently identified. In this note we determine the class of permutation polynomials which represents the functional inverse of the bilinear class.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The homeotic genes are instrumental in establishing segment-specific characteristics. In Drosophila embryos there is ample evidence that the homeotic genes are involved in establishing the differences in the pattern of sense organs between segments. The chordotonal organs are compound sense organs made up of several stretch receptive sensilla. A set of serially homologous chordotonal organs, Ich3 in the 1(st) thoracic segment, dch3 in the 2(nd) and 3(rd) thoracic segments and Ich5 in abdominal segments 1 to 7, is composed of different numbers of sensilla with different positions and orientations. Here we examine this set of sense organs and a companion set, vchA/B and vch 1, in the wild type and mutants for Sex combs reduced, Antennapedia, Ultrabithorax, and abdominal-A, using immunostaining. Mutant phenotypes indicate that Ultrabithorax and abdominal-A in particular influence the formation of these sense organs. Differential expression of abdominal-A and Ultrabithorax within compartments of individual parasegments can precisely modulate the types of sense organs that will arise from a segment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

l-(BETS)2FeCl4 undergoes transitions from an antiferromagnetic insulator to a metal and then to a superconductor as a magnetic field is increased. We use a Hubbard-Kondo model to clarify the role of the Fe31 magnetic ions in these phase transitions. In the high-field regime, the magnetic field acting on the electron spins is compensated by the exchange field He due to the magnetic ions. We show how He can be extracted from the observed splitting of the Shubnikov–de Haas frequencies. We predict the field range for field-induced superconductivity in other materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper reviews recent progress in the field of gaseous detonations, with sections on shock diffraction and reflection, the transition to detonation, hybrid, spherically-imploding, and galloping and stuttering fronts, their structure, their transmission and quenching by additives, the critical energy for initiation and detonation of more unusual fuels. The final section points out areas where our understanding is still far from being complete and contains some suggestions of ways in which progress might be made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix spalling or crushing is one of the important mechanisms of fiber-matrix interaction of fiber reinforced cementitious composites (FRCC). The fiber pullout mechanisms have been extensively studied for an aligned fiber but matrix failure is rarely investigated since it is thought not to be a major affect. However, for an inclined fiber, the matrix failure should not be neglected. Due to the complex process of matrix spalling, experimental investigation and analytical study of this mechanism are rarely found in literature. In this paper, it is assumed that the load transfer is concentrated within the short length of the inclined fiber from the exit point towards anchored end and follows the exponential law. The Mindlin formulation is employed to calculate the 3D stress field. The simulation gives much information about this field. The 3D approximation of the stress state around an inclined fiber helps to qualitatively understand the mechanism of matrix failure. Finally, a spalling criterion is proposed by which matrix spalling occurs only when the stress in a certain volume, rather than the stress at a small point, exceeds the material strength. This implies some local stress redistribution after first yield. The stress redistribution results in more energy input and higher load bearing capacity of the matrix. In accordance with this hypothesis, the evolution of matrix spalling is demonstrated. The accurate prediction of matrix spalling needs the careful determination of the parameters in this model. This is the work of further study. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A discrete protocol for teleportation of superpositions of coherent states of optical-cavity fields is presented. Displacement and parity operators are unconventionally used in Bell-like measurement for field states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observational data collected in the Lake Tekapo hydro catchment of the Southern Alps in New Zealand are used to analyse the wind and temperature fields in the alpine lake basin during summertime fair weather conditions. Measurements from surface stations, pilot balloon and tethersonde soundings, Doppler sodar and an instrumented light aircraft provide evidence of multi-scale interacting wind systems, ranging from microscale slope winds to mesoscale coast-to-basin flows. Thermal forcing of the winds occurred due to differential heating as a consequence of orography and heterogeneous surface features, which is quantified by heat budget and pressure field analysis. The daytime vertical temperature structure was characterised by distinct layering. Features of particular interest are the formation of thermal internal boundary layers due to the lake-land discontinuity and the development of elevated mixed layers. The latter were generated by advective heating from the basin and valley sidewalls by slope winds and by a superimposed valley wind blowing from the basin over Lake Tekapo and up the tributary Godley Valley. Daytime heating in the basin and its tributary valleys caused the development of a strong horizontal temperature gradient between the basin atmosphere and that over the surrounding landscape, and hence the development of a mesoscale heat low over the basin. After noon, air from outside the basin started flowing over mountain saddles into the basin causing cooling in the lowest layers, whereas at ridge top height the horizontal air temperature gradient between inside and outside the basin continued to increase. In the early evening, a more massive intrusion of cold air caused rapid cooling and a transition to a rather uniform slightly stable stratification up to about 2000 m agl. The onset time of this rapid cooling varied about 1-2 h between observation sites and was probably triggered by the decay of up-slope winds inside the basin, which previously countered the intrusion of air over the surrounding ridges. The intrusion of air from outside the basin continued until about mid-night, when a northerly mountain wind from the Godley Valley became dominant. The results illustrate the extreme complexity that can be caused by the operation of thermal forcing processes at a wide range of spatial scales.