927 resultados para FUEL-CELL APPLICATIONS
Resumo:
Human Valpha24(+)Vbeta11(+) NKT (NKT) cells have immune regulatory activities associated with rejection of tumors, infections and control of autoimmune diseases. They can be stimulated to proliferate using alpha-galactosylceramide (KRN7000) and have the potential for therapeutic manipulation. Subpopulations of NKT cells (CD4(+)CD8(-), CD4(-)D8(+) and CD4(-)CD8(-)) have functionally distinctive Th1/Th2 cytokine profiles and their relative numbers following stimulation may influence the Th1/Th2 balance, which may result in or prevent disease. We aimed to determine the effect of different cytokines in culture during stimulation of NKT cells on the relative proportions of NKT cell subpopulations. Our results show that all NKT cell subpopulations expanded following stimulation with KRN7000 and IL-2, IL-7, IL-1 2 or IL-15. Expansion capacity differed between subpopulations, resulting in different relative proportions of CD4(+) and CD4(-) NKT cell subpopulations, and this was influenced by the cytokine used for stimulation. A Th1-biased environment was observed after stimulation of NKT cells. NKT cells expanded under all conditions evaluated demonstrated significant cytotoxicity against U937 tumor cells. In view of the potential for NKT cell subsets to alter the balance of Th1 and Th2 environment, these data provide insights into the effects of NKT cell manipulation for possible therapeutic applications in different disease settings.
Resumo:
Australia is unique in terms of its geography, population distribution, and energy sources. It has an abundance of fossil fuel in the form of coal, natural gas, coal seam methane (CSM), oil, and a variety renewable energy sources that are under development. Unfortunately, most of the natural gas is located so far away from the main centres of population that it is more economic to ship the energy as LNG to neighboring countries. Electricity generation is the largest consumer of energy in Australia and accounts for around 50% of greenhouse gas emissions as 84% of electricity is produced from coal. Unless these emissions are curbed, there is a risk of increasing temperatures throughout the country and associated climatic instability. To address this, research is underway to develop coal gasification and processes for the capture and sequestration Of CO2. Alternative transport fuels such as biodiesel are being introduced to help reduce emissions from vehicles. The future role of hydrogen is being addressed in a national study commissioned this year by the federal government. Work at the University of Queensland is also addressing full-cycle analysis of hydrogen production, transport, storage, and utilization for both stationary and transport applications. There is a modest but growing amount of university research in fuel cells in Australia, and an increasing interest from industry. Ceramic Fuel Cells Ltd. (CFCL) has a leading position in planar solid oxide fuel cells (SOFCs) technology, which is being developed for a variety of applications, and next year Perth in Western Australia is hosting a trial of buses powered by proton-exchange fuel cells. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The bioactivity of three methacryloyloxyethyl phosphate (MOEP) grafted expanded polytetrafluoroethylene (ePTFE) membranes with varying surface coverage as well as unmodified ePTFE was investigated through a series of in vitro tests: calcium phosphate (CaP) growth in simulated body fluid (SBF), serum protein adsorption, and a morphology and attachment study of human osteoblast-like SaOS-2 cells. The graft copolymers were prepared by means of gamma irradiation induced grafting and displayed various surface morphologies and wettabilities depending on the grafting conditions used. Unmodified ePTFE did not induce nucleation of Cal? minerals, whereas all the grafted membranes revealed the growth of Cal? minerals after 7 days immersion in SBF. The sample with lowest surface grafting yield (24% coverage), a smooth graft morphology and relatively high hydrophobicity (theta(adv) = 120 degrees, theta(rec) = 80 degrees) showed carbonated hydroxyapatite growth covering the surface. On the other hand, the samples with high surface grafting yield (76% and 100%), a globular graft morphology and hydrophilic surfaces (theta(adv) = 60 degrees and 80 degrees, theta(rec) = 25 degrees and 15 degrees, respectively) exhibited irregular growth of non-apatitic Cap minerals. Irreversibly adsorbed protein measured after a 1 h immersion in serum solution was quantified by the amount of nitrogen on the surface using XPS, as well as by weight increase. All grafted membranes adsorbed 3-6 times more protein than the unmodified membrane. The sample with the highest surface coverage adsorbed the most protein. Osteoblast-like SaOS-2 cells cultured for 3 h revealed significantly higher levels of cell attachment on all grafted membranes compared to unmodified ePTFE. Although the morphology of the cells was heterogeneous, in general, the higher grafted surfaces showed a much better cell morphology than both the low surface-grafted and the control unmodified sample. The suite of in vitro tests confirms that a judicious choice of grafted monomer such as the phosphate-containing methacrylate monomer (MOEP) significantly improves the bioactivity of ePTFE in vitro. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This research work analyses techniques for implementing a cell-centred finite-volume time-domain (ccFV-TD) computational methodology for the purpose of studying microwave heating. Various state-of-the-art spatial and temporal discretisation methods employed to solve Maxwell's equations on multidimensional structured grid networks are investigated, and the dispersive and dissipative errors inherent in those techniques examined. Both staggered and unstaggered grid approaches are considered. Upwind schemes using a Riemann solver and intensity vector splitting are studied and evaluated. Staggered and unstaggered Leapfrog and Runge-Kutta time integration methods are analysed in terms of phase and amplitude error to identify which method is the most accurate and efficient for simulating microwave heating processes. The implementation and migration of typical electromagnetic boundary conditions. from staggered in space to cell-centred approaches also is deliberated. In particular, an existing perfectly matched layer absorbing boundary methodology is adapted to formulate a new cell-centred boundary implementation for the ccFV-TD solvers. Finally for microwave heating purposes, a comparison of analytical and numerical results for standard case studies in rectangular waveguides allows the accuracy of the developed methods to be assessed. © 2004 Elsevier Inc. All rights reserved.
Resumo:
Objective: Transcranial Doppler (TCD) ultrasonography is a technique that uses a hand-held Doppler transducer (placed on the surface of the cranial skin) to measure the velocity and pulsatility of blood flow within the intracranial and the extracranial arteries. This review critically evaluates the evidence for the use of TCD in the critical care population. Discussion: TCD has been frequently employed for the clinical evaluation of cerebral vasospasm following subarachnoid haemorrhage (SAH). To a lesser degree, TCD has also been used to evaluate cerebral autoregulatory capacity, monitor cerebral circulation during cardiopulmonary bypass and carotid endarterectomies and to diagnose brain death. Technological advances such as M mode, colour Doppler and three-dimensional power Doppler ultrasonography have extended the scope of TCD to include other non-critical care applications including assessment of cerebral emboli, functional TCD and the management of sickle cell disease. Conclusions: Despite publications suggesting concordance between TCD velocity measurements and cerebral blood flow there are few randomized controlled studies demonstrating an improved outcome with the use of TCD monitoring in neurocritical care. Newer developments in this technology include venous Doppler, functional Doppler and use of ultrasound contrast agents.
Resumo:
A T cell antigen receptor (TCR) transmembrane sequence derived peptide (CP) has been shown to inhibit T cell activation both in vitro and in vivo at the membrane level of the receptor signal transduction. To examine the effect of sugar or lipid conjugations on CP function, we linked CP to 1-aminoglucosesuccinate (GS), N-myristate (MYR), mono-di-tripalmitate (LP1, LP2, or LP3), and a lipoamino acid (LA) and examined the effects of these compounds on T cell activation in vitro and by using a rat model of adjuvant-induced arthritis, in vivo. In vitro, antigen presentation results demonstrated that lipid conjugation enhanced CP's ability to lower IL-2 production from 56.99% +/- 15.69 S.D. observed with CP, to 12.08% +/- 3.34 S.D. observed with LA. The sugar conjugate GS resulted in only a mild loss of in vitro activity compared to CP (82.95% +/- 14.96 S.D.). In vivo, lipid conjugation retarded the progression of adjuvant-induced arthritis by approximately 50%, whereas the sugar. conjugated CP, GS, almost completely inhibited the progression of arthritis. This study demonstrates that hydrophobic peptide activity is markedly enhanced in vitro and in vivo by conjugation to lipids or sugars. This may have practical applications in drug delivery and bioavailability of hydrophobic peptides. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Natural killer T (NKT) cells are a lymphocyte lineage, which has diverse immune regulatory activities in many disease settings. Most previous studies have investigated the functions of this family of cells as a single entity, but more recent evidence highlights the distinct functional and phenotypic properties of NKT cell subpopulations. It is likely that the diverse functions of NKT cells are regulated and coordinated by these different NKT subsets. Little is known about how NKT subsets differ in their interactions with the host. We have undertaken the first microarray analysis comparing the gene expression profiles of activated human NKT cell subpopulations, including CD8(+) NKT cells, which have often been overlooked. We describe the significant gene expression differences among NKT cell subpopulations and some of the molecules likely to confer their distinct functional roles. Several genes not associated previously with NKT cells were shown to be expressed differentially in specific NKT cell subpopulations. Our findings provide new insights into the NKT cell family, which may direct further research toward better manipulation of NKT cells for therapeutic applications.
Resumo:
Poly(ε-caprolactone) (PCL) fibers produced by wet spinning from solutions in acetone under low-shear (gravity-flow) conditions resulted in fiber strength of 8 MPa and stiffness of 0.08 Gpa. Cold drawing to an extension of 500% resulted in an increase in fiber strength to 43 MPa and stiffness to 0.3 GPa. The growth rate of human umbilical vein endothelial cells (HUVECs) (seeded at a density of 5 × 104 cells/mL) on as-spun fibers was consistently lower than that measured on tissue culture plastic (TCP) beyond day 2. Cell proliferation was similar on gelatin-coated fibers and TCP over 7 days and higher by a factor of 1.9 on 500% cold-drawn PCL fibers relative to TCP up to 4 days. Cell growth on PCL fibers exceeded that on Dacron monofilament by at least a factor of 3.7 at 9 days. Scanning electron microscopy revealed formation of a cell layer on samples of cold-drawn and gelatin-coated fibers after 24 hours in culture. Similar levels of ICAM-1 expression by HUVECs attached to PCL fibers and TCP were measured using RT-PCR and flow cytometry, indicative of low levels of immune activation. Retention of a specific function of HUVECs attached to PCL fibers was demonstrated by measuring their immune response to lipopolysaccharide. Levels of ICAM-1 expression increased by approximately 11% in cells attached to PCL fibers and TCP. The high fiber compliance, favorable endothelial cell proliferation rates, and retention of an important immune response of attached HUVECS support the use of gravity spun PCL fibers for three-dimensional scaffold production in vascular tissue engineering. © Mary Ann Liebert, Inc.
Resumo:
Transplantation of bone marrow stem cells into spinal cord lesions enhances axonal regeneration and promotes functional recovery in animal studies. There are two types of adult bone marrow stem cell; hematopoietic stem cells (HSCs), and mesenchymal stem cells (MSCs). The mechanisms by which HSCs and MSCs might promote spinal cord repair following transplantation have been extensively investigated. The objective of this review is to discuss these mechanisms; we briefly consider the controversial topic of HSC and MSC transdifferentiation into central nervous system cells but focus on the neurotrophic, tissue sparing, and reparative action of MSC grafts in the context of the spinal cord injury (SCI) milieu. We then discuss some of the specific issues related to the translation of HSC and MSC therapies for patients with SCI and present a comprehensive critique of the current bone marrow cell clinical trials for the treatment of SCI to date.
Resumo:
This review summarises the functions of the enzyme tissue transglutaminase (TG2) in the extracellular matrix (ECM) both as a matrix stabiliser through its protein cross-linking activity and as an important cell adhesion protein involved in cell survival. The contribution of extracellular TG2 to the pathology of important diseases such as cancer and fibrosis are discussed with a view to the potential importance of TG2 as a therapeutic target. The medical applications of TG2 are further expanded by detailing the use of transglutaminase cross-linking in the development of novel biocompatible biomaterials for use in soft and hard tissue repair.
Resumo:
Quantum dots (Qdots) are fluorescent nanoparticles that have great potential as detection agents in biological applications. Their optical properties, including photostability and narrow, symmetrical emission bands with large Stokes shifts, and the potential for multiplexing of many different colours, give them significant advantages over traditionally used fluorescent dyes. Here, we report the straightforward generation of stable, covalent quantum dot-protein A/G bioconjugates that will be able to bind to almost any IgG antibody, and therefore can be used in many applications. An additional advantage is that the requirement for a secondary antibody is removed, simplifying experimental design. To demonstrate their use, we show their application in multiplexed western blotting. The sensitivity of Qdot conjugates is found to be superior to fluorescent dyes, and comparable to, or potentially better than, enhanced chemiluminescence. We show a true biological validation using a four-colour multiplexed western blot against a complex cell lysate background, and have significantly improved previously reported non-specific binding of the Qdots to cellular proteins.
Resumo:
This thesis presents the potential sensing applications of fibre Bragg gratings in polymer optical fibres. Fibre Bragg gratings are fabricated in different kinds of polymer optical fibres, including Poly methyl methacrylate (PMMA) and TOPAS cyclic olefin copolymer based microstructured polymer optical fibres and PMMA based step-index photosensitive polymer optical fibre, using the 325nm continuous wave ultraviolet laser and phase mask technique. The thermal response of fabricated microstructured polymer optical fibre Bragg gratings has been characterized. The PMMA based single mode microstructured polymer optical fibre Bragg gratings exhibit negative non-linear Bragg wavelength shift with temperature, including a quasi-linear region. The thermal sensitivity of such Bragg gratings in the linear region is up to -97pm/°C. A permanent shift in the grating wavelength at room temperature is observed when such gratings are heated above a threshold temperature which can be extended by annealing the fibre before grating inscription. The largest positive Bragg wavelength shift with temperature in transmission is observed in TOPAS based few moded microstructured polymer optical fibre Bragg gratings and the measured temperature sensitivity is 250±0.5pm/°C. Gluing method is developed to maintain stable optical coupling between PMMA based single mode step index polymer optical fibre Bragg gratings and single mode step index silica optical fibre. Being benefit from this success, polymer optical fibre Bragg gratings are able to be characterised for their temperature, humidity and strain sensitivity, which are -48.2±1pm/°C, 38.3±0.5pm per %RH and 1.33±0.04 pm/µ??respectively. These sensitivities have been utilised to achieve several applications. The strain sensitivity of step index polymer optical fibre Bragg grating devices has been exploited in the potential application of the strain condition monitoring of heavy textiles and when being attached to textile specimens with certain type of adhesives. These polymer fibre Bragg grating devices show better strain transfer and lower structure reinforcement than silica optical fibre Bragg grating devices. The humidity sensitivity of step index polymer optical fibre Bragg grating devices is applied to detecting water in jet fuel and is proved to be able to measure water content of less than 20 ppm in Jet fuel. A simultaneous temperature and humidity sensor is also made by attaching a polymer fibre Bragg grating to a silica optical fibre Bragg grating and it shows better humidity measurement accuracy than that of electronic competitors.
Resumo:
BACKGROUND: Recombinant protein production is universally employed as a solution to obtain the milligram to gram quantities of a given protein required for applications as diverse as structural genomics and biopharmaceutical manufacture. Yeast is a well-established recombinant host cell for these purposes. In this study we wanted to investigate whether our respiratory Saccharomyces cerevisiae strain, TM6*, could be used to enhance the productivity of recombinant proteins over that obtained from corresponding wild type, respiro-fermentative strains when cultured under the same laboratory conditions. RESULTS: Here we demonstrate at least a doubling in productivity over wild-type strains for three recombinant membrane proteins and one recombinant soluble protein produced in TM6* cells. In all cases, this was attributed to the improved biomass properties of the strain. The yield profile across the growth curve was also more stable than in a wild-type strain, and was not further improved by lowering culture temperatures. This has the added benefit that improved yields can be attained rapidly at the yeast's optimal growth conditions. Importantly, improved productivity could not be reproduced in wild-type strains by culturing them under glucose fed-batch conditions: despite having achieved very similar biomass yields to those achieved by TM6* cultures, the total volumetric yields were not concomitantly increased. Furthermore, the productivity of TM6* was unaffected by growing cultures in the presence of ethanol. These findings support the unique properties of TM6* as a microbial cell factory. CONCLUSIONS: The accumulation of biomass in yeast cell factories is not necessarily correlated with a proportional increase in the functional yield of the recombinant protein being produced. The respiratory S. cerevisiae strain reported here is therefore a useful addition to the matrix of production hosts currently available as its improved biomass properties do lead to increased volumetric yields without the need to resort to complex control or cultivation schemes. This is anticipated to be of particular value in the production of challenging targets such as membrane proteins.