815 resultados para FREE FATTY ACIDS
Resumo:
The impact of acid rock drainage (ARD) and eutrophication on microbial communities in stream sediments above and below an abandoned mine site in the Adelaide Hills, South Australia, was quantified by PLFA analysis. Multivariate analysis of water quality parameters, including anions, soluble heavy metals, pH, and conductivity, as well as total extractable metal concentrations in sediments, produced clustering of sample sites into three distinct groups. These groups corresponded with levels of nutrient enrichment and/or concentration of pollutants associated with ARD. Total PLFA concentration, which is indicative of microbial biomass, was reduced by >70% at sites along the stream between the mine site and as far as 18 km downstream. Further downstream, however, recovery of the microbial abundance was apparent, possibly reflecting dilution effect by downstream tributaries. Total PLFA was >40% higher at, and immediately below, the mine site (0-0.1 km), compared with sites further downstream (2.5-18 km), even after accounting for differences in specific surface area of different sediment samples. The increased microbial population in the proximity of the mine source may be associated with the presence of a thriving iron-oxidizing bacteria community as a consequence of optimal conditions for these organisms while the lower microbial population further downstream corresponded with greater sediments' metal concentrations. PCA of relative abundance revealed a number of PLFAs which were most influential in discriminating between ARD-polluted sites and the rest of the sites. These PLFA included the hydroxy fatty acids: 2OH12:0, 3OH12:0, 2OH16:0; the fungal marker: 18:2ω6; the sulfate-reducing bacteria marker 10Me16:1ω7; and the saturated fatty acids 12:0, 16:0, 18:0. Partial constrained ordination revealed that the environmental parameters with the greatest bearing on the PLFA profiles included pH, soluble aluminum, total extractable iron, and zinc. The study demonstrated the successful application of PLFA analysis to rapidly assess the toxicity of ARD-affected waters and sediments and to differentiate this response from the effects of other pollutants, such as increased nutrients and salinity.
Resumo:
Fatty acid methyl ester (FAME) profiles, together with Biolog substrate utilization patterns, were used in conjunction with measurements of other soil chemical and microbiological properties to describe differences in soil microbial communities induced by increased salinity and alkalinity in grass/legume pastures at three sites in SE South Australia. Total ester-linked FAMEs (EL-FAMEs) and phospholipid-linked FAMEs (PL-FAMEs), were also compared for their ability to detect differences between the soil microbial communities. The level of salinity and alkalinity in affected areas of the pastures showed seasonal variation, being greater in summer than in winter. At the time of sampling for the chemical and microbiological measurements (winter) only the affected soil at site 1 was significantly saline. The affected soils at all three sites had lower organic C and total N concentrations than the corresponding non-affected soils. At site 1 microbial biomass, CO 2-C respiration and the rate of cellulose decomposition was also lower in the affected soil compared to the non-affected soil. Biomarker fatty acids present in both the EL- and PL-FAME profiles indicated a lower ratio of fungal to bacterial fatty acids in the saline affected soil at site 1. Analysis of Biolog substrate utilization patterns indicated that the bacterial community in the affected soil at site 1 utilized fewer carbon substrates and had lower functional diversity than the corresponding community in the non-affected soil. In contrast, increased alkalinity, of major importance at sites 2 and 3, had no effect on microbial biomass, the rate of cellulose decomposition or functional diversity but was associated with significant differences in the relative amounts of several fatty acids in the PL-FAME profiles indicative of a shift towards a bacterial dominated community. Despite differences in the number and relative amounts of fatty acids detected, principal component analysis of the EL- and PL-FAME profiles were equally capable of separating the affected and non-affected soils at all three sites. Redundancy analysis of the FAME data showed that organic C, microbial biomass, electrical conductivity and bicarbonate-extractable P were significantly correlated with variation in the EL-FAME profiles, whereas pH, electrical conductivity, NH 4-N, CO 2-C respiration and the microbial quotient were significantly correlated with variation in the PL-FAME profiles. Redundancy analysis of the Biolog data indicated that cation exchange capacity and bicarbonate-extractable K were significantly correlated with the variation in Biolog substrate utilization patterns.
Resumo:
Knowledge of the amounts and types of fatty acids in groundnut oil is beneficial, particularly from a nutritional standpoint. Germplasm evaluation data for fatty acid composition on 819 accessions of groundnut (Arachis hypogaea L.) from the Australian Tropical Field Crops Genetic Resource Centre, Biloela, Queensland were examined. Data for eight quantitative fatty acid descriptors have been documented. Statistical assessment, via methods of pattern analysis, summarised and described the patterns of variation in fatty acid composition of the groundnut accessions in the Australian germplasm collection. Presentation of the results from principal components analysis and hierarchical cluster analysis using a biplot was shown to be a very useful interpretative tool. Such a biplot enables a simultaneous examination of the relationships among all the accessions and the fatty acids. Unlike that information available via database searches, the results from contribution analysis together with the biplot provide a global picture of the diversity available for use in plant breeding programs. The use of standardised data for eight fatty acids, compared to using three specific fatty acids, provided a better description of the total diversity available because it remains relevant with possible changes in the nutritional preferences for fatty acids. Fatty acid composition was found to vary in relation to the branching pattern of the accessions. This pattern is generally indicative of the botanical types of groundnuts; Virginia (alternate) compared to Spanish and Valencia (sequential) botanical types.
Resumo:
The structural features of fatty acids in biodiesel, including degree of unsaturation, percentage of saturated fatty acids and average chain length, influence important fuel properties such as cetane number, iodine value, density, kinematic viscosity, higher heating value and oxidation stability. The composition of fatty acid esters within the fuel should therefore be in the correct ratio to ensure fuel properties are within international biodiesel standards such as ASTM 6751 or EN 14214. This study scrutinises the influence of fatty acid composition and individual fatty acids on fuel properties. Fuel properties were estimated based on published equations, and measured according to standard procedure ASTM D6751 and EN 14214 to confirm the influences of the fatty acid profile. Based on fatty acid profile-derived calculations, the cetane number of the microalgal biodiesel was estimated to be 11.6, but measured 46.5, which emphasises the uncertainty of the method used for cetane number calculation. Multi-criteria decision analysis (MCDA), PROMETHEE-GAIA, was used to determine the influence of individual fatty acids on fuel properties in the GAIA plane. Polyunsaturated fatty acids increased the iodine value and had a negative influence on cetane number. Kinematic viscosity was negatively influenced by some long chain polyunsaturated fatty acids such as C20:5 and C22:6 and some of the more common saturated fatty acids C14:0 and C18:0. The positive impact of average chain length on higher heating value was also confirmed in the GAIA plane
Resumo:
The fatty acids of 18 strains of Bordetella avium, 3 strains of Alcaligenes faecalis, 5 strains of Bordetella bronchiseptica, and 12 strains of a B. avium-like organism were examined by gas chromatography-mass spectrometry. The presence of a significant amount of the acid 2-OH C14:0 characterized B. avium and the B. avium-like organism. B. avium and the B. avium-like organism differed in their relative concentrations of C16:1 and 3-OH C14:0 acids. B. bronchiseptica and A. faecalis were distinguishable by comparison of the relative concentrations of C18:0 and C18:1 acids.
Resumo:
Summary Prototype sand-worm filtration beds were constructed at two prawn farms and one fish farm to assess and demonstrate their polychaete (marine worm) production and wastewater remediation capacities at semi-commercial scale. Wastewater treatment properties were monitored and worms produced were assessed and either sold for bait or used by the farms’ hatcheries as broodstock (prawn or fish breeder) feed. More than 34 megalitres of prawn- and fish-pond water was beneficially treated in the 116-319-d trial. The design of the polychaete-assisted sand filters (PASFs) constructed at each farm affected their water handling rates, which on average ranged from 315 to 1000 L m-2 d-1 at the three farms. A low profile design incorporating shallow bunded ponds made from polyethylene liner and timber stakes provided the easiest method of construction. This simple design applied at broad scale facilitated the highest quantities of treated water and the greatest worm production. Designs with higher sides increased the head pressure above the sand bed surface, thus increasing the amount of water that could be treated each day. Most water qualities were affected in a similar way to that demonstrated in the previous tank trials: dissolved oxygen, pH, total suspended solids and chlorophyll a levels were all consistently significantly lowered as pond water percolated through the sand bed, and dissolved forms of nitrogen and phosphorus were marginally increased on several occasions. However, unlike the previous smaller-scale tank trials, total nitrogen (TN) and total phosphorus (TP) levels were both significantly lowered by these larger-scale PASFs. The reasons for this are still unclear and require further research. Maximum TN and TP removals detected in the trial were 48.8% and 67.5%, respectively, and average removals (in unfed beds) at the three farms ranged from 20.0 to 27.7% for TN and from 22.8 to 40.8% for TP. Collectively, these results demonstrate the best suspended solids, chlorophyll and macronutrient removal capacities so far reported for any mariculture wastewater treatment methodology to date. Supplemental feeding of PASFs with fish meal was also investigated at one farm as a potential means of increasing their polychaete biomass production. Whilst fed beds produced higher biomass (152 ± 35 g m-2) compared with unfed beds (89 ± 17 g m-2) after 3.7 months of operation, the low number of replicates (2) prevented statistically significant differences from being demonstrated for either growth or survival. At harvest several months later, worm biomass production was estimated to be similar to, or in slight excess of, previously reported production levels (300-400 g m-2). Several qualities of filtered water appear to have been affected by supplemental feeding: it appeared to marginally lower dissolved oxygen and pH levels, and increased the TN and TP levels though not so much to eliminate significant beneficial water treatment effects. Periodic sampling during an artificial-tide demonstrated the tendency for treated-water quality changes during the first hour of filtration. Total nitrogen and ammonia peaked early in the tidal flow and then fell to more stable levels for the remainder of the filtration period. Other dissolved nutrients also showed signs of this sand-bed-flushing pattern, and dissolved oxygen tended to climb during the first hour and become more stable thereafter. These patterns suggest that the routine sampling of treated water undertaken at mid-inflow during the majority of the wider study would likely have overestimated the levels of TN and dissolved nutrients discharged from the beds, and hence underestimated the PASFs treatment efficacies in this regard. Analyses of polychaete biomass collected from each bed in the study revealed that the worms were free from contamination with the main prawn viruses that would create concerns for their feeding to commercial prawn broodstock in Australia. Their documented proximal and nutritional contents also provide a guide for hatchery operators when using live or frozen stock. Their dry matter content ranged from 18.3 to 22.3%, ash ranged from 10.2 to 14.0%, gross energy from 20.2 to 21.5 MJ kg-1, and fat from 5.0 to 9.2%. Their cholesterol levels ranged from 0.86 to 1.03% of dry matter, whilst total phospholipids range from 0.41 to 0.72%. Thirty-one different fatty acids were present at detectable (≥0.005% of dry matter) levels in the sampled worm biomass. Palmitic acid was by far the most prevalent fatty acid detected (1.21 ± 0.18%), followed by eicosapentaenoic (EPA) (0.48 ± 0.03%), stearic (0.46 ± 0.04%), vaccenic (0.38 ± 0.05%), adrenic (0.35 ± 0.02%), docosadienoic (0.28 ± 0.02%), arachidonic (AA) (0.22 ± 0.01%), palmitoleic (0.20 ± 0.04%) and 23 other fatty acids with average contents of less than 0.2% of dry matter. Supplemental feeding with fish meal at one farm appeared to increase the docosahexaenoic acid (DHA) content of the worms considerably, and modify the average AA : EPA : DHA from 1.0 : 2.7 : 0.3 to 1.0 : 2.0 : 1.1. Consistent with previous results, the three most heavily represented amino acids in the dry matter of sampled worms were glutamic acid (8.5 ± 0.2%), aspartic acid (5.5 ± 0.1%) and glycine (4.9 ± 0.5%). These biomass content results suggest that worms produced in PASF systems are well suited to feeding to prawn and fish broodstock, and provide further strong evidence of the potential to modify their contents for specific nutritional uses. The falling wild-fishery production of marine bloodworms in Queensland is typical of diminishing polychaete resources world-wide and demonstrates the need to develop sustainable production methods here and overseas. PASF systems offer the dual benefits of wastewater treatment for environmental management and increased productivity through a valuable secondary crop grown exclusively on waste nutrients.
Resumo:
Some of the enzyme systems in the formation of p-hydroxybenzoate from tyrosine have been studied in the rat liver in vitro. The conversion of p-hydroxycinnamate into p-hydroxybenzoate, which was found in rat liver mitochondria showed a number of differences when compared with the b-oxidation of fatty acids. Studies with p-hydroxy[U-14C]cinnamate indicated that 14CO2 was released during the formation of p-hydroxybenzoate. The formation of p-hydroxycinnamate from tyrosine of p-hydroxyphenyl-lactate could not be demonstrated in vitro. The interconversion of p-hydroxycinnamate and p-hydroxyphenylpropionate was demonstrated in rat liver mitochondria.
Resumo:
Vegetable oils are a potential source of base oils for biodegradable lubricants, with limited oxidative stability. This study focuses on the effect of long-term ageing and the influence of oxidation products on the boundary lubrication performance of coconut and soy bean oils, by subjecting them to accelerated ageing in a dark oven at elevated temperature. The samples were collected at regular intervals and analysed for the changes in viscosity, percentage of free fatty acid and peroxide number compared to fresh oil samples. The boundary lubrication properties of these samples were evaluated using a four-ball tester. Increased wear observed with aged oil samples was linked to the destruction of triglyceride structure and formation of peroxides. The difference in the wear properties of soy bean oil to coconut oil was accounted by its high content of unsaturated fatty acids and its susceptibility to undergo oxidation. It was concluded that the coconut oil can perform as a better lubricant and has got a better storage life compared to soy bean oil.
Resumo:
VITAMIN A and cholesterol esters have been shown to undergo extensive hydrolysis in the lumen of the small intestine during the process of absorption; they are re-esterified to appear in the lymph mostly as esters1,2. However, the vitamin A esters of the lymph, blood and liver of the rat are formed by long-chain fatty acids3 and in the normal rat liver, probably as palmitates4. On the other hand, cholesterol esters are usually made up of poly-unsaturated fatty acids in the lymph and blood of rats5. For the absorption of the two lipid materials, the enzymes of the pancreas have been largely implicated, while not much attention has been paid to the possible role of the mucosal enzymes. From the behaviour of the mucosal enzymes, as presented here, it appears that probably these enzymes play a more important part in the re-esterification of the two lipid materials during their absorption.
Resumo:
Genistein and daidzein, the major isoflavones present in soybeans, possess a wide spectrum of physiological and pharmacological functions. The binding of genistein to human serum albumin (HSA) has been investigated by equilibrium dialysis, fluorescence measurements, CD and molecular visualization. One mole of genistein is bound per mole of HSA with a binding constant of 1.5 +/- 0.2 X 10(5) m(-1). Binding of genistein to HSA precludes the attachment of daidzein. The ability of HSA to bind genistein is found to be lost when the tryptophan residue of albumin is modified with N-bromosuccinimide. At 27 degrees C (pH 7.4), van't Hoff's enthalpy, entropy and free energy changes that accompany the binding are found to be -13.16 kcal.mol(-1), -21 cal.mol(-1)K(-1) and -6.86 kcal.mol(-1), respectively. Temperature and ionic strength dependence and competitive binding measurements of genistein with HSA in the presence of fatty acids and 8-anilino-1-naphthalene sulfonic acid have suggested the involvement of both hydrophobic and ionic interactions in the genistein-HSA binding. Binding measurements of genistein with BSA and HSA, and those in the presence of warfarin and 2,3,5-tri-iodobenzoic acid and Forster energy transfer measurements have been used for deducing the binding pocket on HSA. Fluorescence anisotropy measurements of daidzein bound and then displaced with warfarin, 2,3,5-tri-iodobenzoic acid or diazepam confirm the binding of daidzein and genistein to subdomain IIA of HSA. The ability of HSA to form ternery complexes with other neutral molecules such as warfarin, which also binds within the subdomain IIA pocket, increases our understanding of the binding dynamics of exogenous drugs to HSA.
Resumo:
Acetylation of lysine residues is a posttranslational modification that is used by both eukaryotes and prokaryotes to regulate a variety of biological processes. Here we identify multiple substrates for the cAMP-dependent protein lysine acetyltransferase from Mycobacterium tuberculosis (KATmt). We demonstrate that a catalytically important lysine residue in a number of FadD (fatty acyl CoA synthetase) enzymes is acetylated by KATmt in a cAMP-dependent manner and that acetylation inhibits the activity of FadD enzymes. A sirtuin-like enzyme can deacetylate multiple FadDs, thus completing the regulatory cycle. Using a strain deleted for the KATmt ortholog in Mycobacterium bovis Bacillus Calmette-Guerin (BCG), we show for the first time that acetylation is dependent on intracellular cAMP levels. KATmt can utilize propionyl CoA as a substrate and, therefore, plays a critical role in alleviating propionyl CoA toxicity in mycobacteria by inactivating acyl CoA synthetase (ACS). The precision by which mycobacteria can regulate the metabolism of fatty acids in a cAMP-dependent manner appears to be unparalleled in other biological organisms and is ideally suited to adapt to the complex environment that pathogenic mycobacteria experience in the host.
Resumo:
[EN]A survey of Canadian retail beef was undertaken with emphasis on the trans fatty acid (TFA) and conjugated linoleic acid (CLA) isomers, and compared with current health recommendations. Thirty striploin steaks were collected in the winter and summer from major grocery stores in Calgary (Alberta, Canada). Steak fatty acid compositions (backfat and longissimus lumborum muscle analysed separately) showed minor seasonal differences with lower total saturates (PB0.05) and higher total monounsaturates (PB 0.01) in winter, but no differences in total polyunsaturated fatty acids. The ratio of n-6 and n-3 polyunsaturated fatty acid in longissimus lumborum averaged 5.8. The average TFA content in longissimus lumborum was 0.128 g 100 g_1 serving size, and 10t-18:1 was found to be the predominant isomer (32% of total trans), while vaccenic acid was second most abundant (15% of total trans). The CLA content in longissimus lumborum was similar to that of backfat, ranging from 0.43 to 0.60% of total fatty acids and rumenic acid represented 60% of total isomers. Overall, there is still room for improvement in the saturated, mono- and polyunsaturated fatty acid composition of Canadian beef to meet general dietary guidelines for human consumption and additional targets should include reducing 10t-18:1 while increasing both rumenic and vaccenic acids.
Resumo:
[EN]In an attempt to predict intramuscular fatty acid composition using easily accessible fat depots, between-tissue correlations were studied in 75 Asturiana de los Valles bulls with different levels of muscular hypertrophy, and 25 Asturiana de la Montan˜ a bulls. Trans-18:1 in intramuscular fat was highly and positively correlated with levels in subcutaneous and intermuscular fats, while levels of total n-3 were not correlated. Predicting intramuscular fatty acid composition using easily accessible depots is thus possible for some fatty acids exhibiting high between-tissue correlations (e.g., trans-18:1) but breed and tissue specific deposition may limit this for others (e.g., n-3 fatty acids).
Resumo:
[EN]Trans fatty acids are found naturally in foods, particularly in those derived from ruminant animals, such as beef and dairy cattle. Over the past few decades, human consumption of trans fatty acids has increased, but this has been mainly from products containing partially hydrogenated vegetable oils. The correlation of trans fatty acid consumption with diseases such as coronary heart disease has been cause for concern, and led to recommendations to reduce their consumption. Trans fatty acids, however, have differing effects on human health. Therefore, in foods produced from ruminant animals, it is important to know their trans fatty acid composition, and how to enrich or deplete fatty acids that have positive or negative health effects. This review will cover the analysis of trans fatty acids in beef, their origin, how to manipulate their concentrations, and give a brief overview of their health effects.