916 resultados para FIXATION
Resumo:
We studied the effect of intervening saccades on the manual interception of a moving target. Previous studies suggest that stationary reach goals are coded and updated across saccades in gaze-centered coordinates, but whether this generalizes to interception is unknown. Subjects (n = 9) reached to manually intercept a moving target after it was rendered invisible. Subjects either fixated throughout the trial or made a saccade before reaching (both fixation points were in the range of -10° to 10°). Consistent with previous findings and our control experiment with stationary targets, the interception errors depended on the direction of the remembered moving goal relative to the new eye position, as if the target is coded and updated across the saccade in gaze-centered coordinates. However, our results were also more variable in that the interception errors for more than half of our subjects also depended on the goal direction relative to the initial gaze direction. This suggests that the feedforward transformations for interception differ from those for stationary targets. Our analyses show that the interception errors reflect a combination of biases in the (gaze-centered) representation of target motion and in the transformation of goal information into body-centered coordinates for action.
Resumo:
Catching a ball involves a dynamic transformation of visual information about ball motion into motor commands for moving the hand to the right place at the right time. We previously formulated a neural model for this transformation to account for the consistent leftward movement biases observed in our catching experiments. According to the model, these biases arise within the representation of target motion as well as within the transformation from a gaze-centered to a body-centered movement command. Here, we examine the validity of the latter aspect of our model in a catching task involving gaze fixation. Gaze fixation should systematically influence biases in catching movements, because in the model movement commands are only generated in the direction perpendicular to the gaze direction. Twelve participants caught balls while gazing at a fixation point positioned either straight ahead or 14 degrees to the right. Four participants were excluded because they could not adequately maintain fixation. We again observed a consistent leftward movement bias, but the catching movements were unaffected by fixation direction. This result refutes our proposal that the leftward bias partly arises within the visuomotor transformation, and suggests instead that the bias predominantly arises within the early representation of target motion, specifically through an imbalance in the represented radial and azimuthal target motion.
Resumo:
Although most chitons (Mollusca: Polyplacophora) are shallow-water molluscs, diverse species also occur in deep-sea habitats. We investigated the feeding strategies of two species, Leptochiton boucheti and Nierstraszella lineata, recovered on sunken wood sampled in the western Pacific, close to the Vanuatu Islands. The two species display distinctly different associations with bacterial partners. Leptochiton boucheti harbours Mollicutes in regions of its gut epithelium and has no abundant bacterium associated with its gill. Nierstraszella lineata displays no dense gut-associated bacteria, but harbours bacterial filaments attached to its gill epithelium, related to the Deltaproteobacteria symbionts found in gills of the wood-eating limpet Pectinodonta sp. Stable carbon and nitrogen isotope signatures and an absence of cellulolytic activity give evidence against a direct wood-feeding diet; both species are secondary consumers within the wood food web. We suggest that the distinct associations with bacterial partners are linked to niche specialisations of the two species. Nierstraszella lineata is in a taxonomic family restricted to sunken wood and is possibly adapted to more anoxic conditions thanks to its gill-associated bacteria. Leptochiton boucheti is phylogenetically more proximate to an ancestral form not specialised on wood and may itself be more of a generalist; this observation is congruent with its association with Mollicutes, a bacterial clade comprising gut-associated bacteria occurring in several metazoan phyla.
Resumo:
The microbial contribution to soil organic matter (SOM) has recently been shown to be much larger than previously thought and thus its role in carbon sequestration may also be underestimated. In this study we employ C-13 ((CO2)-C-13) to assess the potential CO2 sequestration capacity of soil chemoautotrophic bacteria and combine nuclear magnetic resonance (NMR) with stable isotope probing (SIP), techniques that independently make use of the isotopic enrichment of soil microbial biomass. In this way molecular information generated from NMR is linked with identification of microbes responsible for carbon capture. A mathematical model is developed to determine real-time CO2 flux so that net sequestration can be calculated. Twenty-eight groups of bacteria showing close homologies with existing species were identified. Surprisingly, Ralstonia eutropha was the dominant group. Through NMR we observed the formation of lipids, carbohydrates, and proteins produced directly from CO2 utilized by microbial biomass. The component of SOM directly associated with CO2 capture was calculated at 2.86 mg C (89.21 mg kg(-1)) after 48 h. This approach can,differentiate between SOM derived through microbial uptake of CO2 and other SOM constituents and represents a first step in tracking the fate and dynamics of microbial biomass in soil.
Resumo:
INTRODUCTION:
Dorsally displaced fractures of the distal radius fractures are one of the commonest in day-to-day practice. There is still no consensus among surgeons regarding the suitability of using volar or the dorsal cortex as basis for internal fixation for dorsally displaced fractures.
BACKGROUND:
We report an anatomical study, which compares the thickness of the volar and dorsal cortices of cadaveric adult radii using digital photography.
RESULTS:
Results of this study show that the volar cortex was statistically, significantly thicker than the dorsal cortex. We believe that the volar cortex may behave as the calcar of the distal radius and hence internal fixation devices applied to the volar cortex may provide a more stable internal fixation compared to those based on the dorsal cortex.
Resumo:
Propionibacterium acnes and coagulase-negative staphylococci (CoNS) are opportunistic pathogens implicated in prosthetic joint and fracture fixation device-related infections. The purpose of this study was to determine whether P. acnes and the CoNS species Staphylococcus lugdunensis, isolated from an "aseptically failed" prosthetic hip joint and a united intramedullary nail-fixed tibial fracture, respectively, could cause osteomyelitis in an established implant-related osteomyelitis model in rabbits in the absence of wear debris from the implant material. The histological features of P. acnes infection in the in vivo rabbit model were consistent with localized pyogenic osteomyelitis, and a biofilm was present on all explanted intramedullary (IM) nails. The animals displayed no outward signs of infection, such as swelling, lameness, weight loss, or elevated white blood cell count. In contrast, infection with S. lugdunensis resulted in histological features consistent with both pyogenic osteomyelitis and septic arthritis, and all S. lugdunensis-infected animals displayed weight loss and an elevated white blood cell count despite biofilm detection in only two out of six rabbits. The differences in the histological and bacteriological profiles of the two species in this rabbit model of infection are reflective of their different clinical presentations: low-grade infection in the case of P. acnes and acute infection for S. lugdunensis. These results are especially important in light of the growing recognition of chronic P. acnes biofilm infections in prosthetic joint failure and nonunion of fracture fixations, which may be currently reported as "aseptic" failure. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Resumo:
Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young's moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.
Resumo:
Humans typically make several rapid eye movements (saccades) per second. It is thought that visual working memory can retain and spatially integrate three to four objects or features across each saccade but little is known about this neural mechanism. Previously we showed that transcranial magnetic stimulation (TMS) to the posterior parietal cortex and frontal eye fields degrade trans-saccadic memory of multiple object features (Prime, Vesia, & Crawford, 2008, Journal of Neuroscience, 28(27), 6938-6949; Prime, Vesia, & Crawford, 2010, Cerebral Cortex, 20(4), 759-772.). Here, we used a similar protocol to investigate whether dorsolateral prefrontal cortex (DLPFC), an area involved in spatial working memory, is also involved in trans-saccadic memory. Subjects were required to report changes in stimulus orientation with (saccade task) or without (fixation task) an eye movement in the intervening memory interval. We applied single-pulse TMS to left and right DLPFC during the memory delay, timed at three intervals to arrive approximately 100ms before, 100ms after, or at saccade onset. In the fixation task, left DLPFC TMS produced inconsistent results, whereas right DLPFC TMS disrupted performance at all three intervals (significantly for presaccadic TMS). In contrast, in the saccade task, TMS consistently facilitated performance (significantly for left DLPFC/perisaccadic TMS and right DLPFC/postsaccadic TMS) suggesting a dis-inhibition of trans-saccadic processing. These results are consistent with a neural circuit of trans-saccadic memory that overlaps and interacts with, but is partially separate from the circuit for visual working memory during sustained fixation.
Resumo:
The broad aim of this work was to investigate and optimise the properties of calcium phosphate bone cements (CPCs) for use in vertebroplasty to achieve effective primary fixation of spinal fractures. The incorporation of collagen, both bovine and from a marine sponge (Chondrosia reniformis), into a CPC was investigated. The biological properties of the CPC and collagen-CPC composites were assessed in vitro through the use of human bone marrow stromal cells. Cytotoxicity, proliferation and osteoblastic differentiation were evaluated using lactate dehydrogenase, PicoGreen and alkaline phosphatase activity assays respectively. The addition of both types of collagen resulted in an increase in cytotoxicity, albeit not to a clinically relevant level. Cellular proliferation after 1, 7 and 14 days was unchanged. The osteogenic potential of the CPC was reduced through the addition of bovine collagen but remained unchanged in the case of the marine collagen. These findings, coupled with previous work showing that incorporation of marine collagen in this way can improve the physical properties of CPCs, suggest that such a composite may offer an alternative to CPCs in applications where low setting times and higher mechanical stability are important.
Resumo:
Background and purpose: We are developing a technique for highly focused vocal cord irradiation in early glottic carcinoma to optimally treat a target volume confined to a single cord. This technique, in contrast with the conventional methods, aims at sparing the healthy vocal cord. As such a technique requires sub-mm daily targeting accuracy to be effective, we investigate the accuracy achievable with on-line kV-cone beam CT (CBCT) corrections. Materials and methods: CBCT scans were obtained in 10 early glottic cancer patients in each treatment fraction. The grey value registration available in X-ray volume imaging (XVI) software (Elekta, Synergy) was applied to a volume of interest encompassing the thyroid cartilage. After application of the thus derived corrections, residue displacements with respect to the planning CT scan were measured at clearly identifiable relevant landmarks. The intra- and inter-observer variations were also measured. Results: While before correction the systematic displacements of the vocal cords were as large as 2.4 ± 3.3 mm (cranial-caudal population mean ± SD Σ), daily CBCT registration and correction reduced these values to less than 0.2 ± 0.5 mm in all directions. Random positioning errors (SD σ) were reduced to less than 1 mm. Correcting only for translations and not for rotations did not appreciably affect this accuracy. The residue random displacements partly stem from intra-observer variations (SD = 0.2-0.6 mm). Conclusion: The use of CBCT for daily image guidance in combination with standard mask fixation reduced systematic and random set-up errors of the vocal cords to <1 mm prior to the delivery of each fraction dose. Thus, this facilitates the high targeting precision required for a single vocal cord irradiation. © 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Leptospirosis is a globally important zoonotic infection caused by spirochaetes of the genus Leptospira. It is transmitted to humans by direct contact with infected animals or indirectly via contaminated water. It is mainly a problem of the resource-poor developing countries of the tropical and sub-tropical regions of the world but outbreaks due to an increase in travel and recreational activities have been reported in developed and more industrialized areas of the world. Current methods of diagnosis are costly, time-consuming and require the use of specialized laboratory equipment and personnel. The purpose of this paper is to report the validation of the 'Leptorapide®' test (Linnodee Ltd, Northern Ireland) for the diagnosis of human leptospirosis. It is a simple one-step latex agglutination assay performed using equal volumes of serum sample and antigen-bound latex beads. Evidence of leptospiral antibodies is determined within minutes. Agglutination is scored on a scale of 1-5 and the results interpreted using a score card provided with the kit. Validation has been performed with a large sample size obtained from individuals originating from various parts of the world including Brazil and India. The test has shown sensitivity and specificity values of 97·1% and 94·0%, respectively, relative to the microscopic agglutination test. The results demonstrate that Leptorapide offers a cost-effective and accurate alternative to the more historical methods of antibody detection.
Resumo:
Bioresorbable polymers have been widely investigated as materials exhibiting significant potential for successful application in the medical fields of bone fixation devices and drug delivery. Further to the ability to control degradation, surface engineering of polymers has been highlighted as a key method central to their development. Previous work has demonstrated the ability of electron beam (e-beam) technology to control the degradation profiles and bioresorption of a number of commercially relevant bioresorbable polymers (poly-l-lactic acid (PLLA), L-lactide/ DL-lactide co-polymer (PLDL) and poly(lactic-co-glycolic acid) (PLGA). This work investigates the further potential of e-beam technology to impart added biofunctionality through the manipulation of polymer (PLLA) surface properties. A Dynamatron Continuous DC e-beam unit (Synergy Health, UK), with beam energies of 0.5, 0.75, and 1.5 MeV, was used for the irradiation of PLLA samples with delivered surface doses of 150 or 500 kGy at each energy level. The chosen conditions reflect the need to achieve a specific surface modification for the control of surface degradation as demonstrated in previous work. Surface characterization was then performed using contact angle analysis, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and atomic force microscopy.
Results demonstrated a significant increase in surface wettability post e-beam treatment. In correlation with this, XPS data showed the introduction of oxygen-containing functional groups to the surface of PLLA. Raman spectroscopy indicated chain scission in the near surface region of PLLA. E-beam irradiation did not seem to affect the surface roughness of PLLA as a direct consequence of the treatment. In conclusion electron beam surface modification has been found to modify both the surface-to-bulk bioresorption profile and the surface hydrophilicity. Both could provide benefits in relation to the performance of implantable medical devices.
Resumo:
A microcosm is described in which root exudation may be estimated in the presence of microorganisms. Ryegrass seedlings are grown in microcosms in which roots were spatially separated from a microbial inoculant by a Millipore membrane. Seedlings grown in the microcosms were labelled with [14C]-CO2, and the fate of the label within the plant and rhizosphere was determined. Inoculation of the microcosms with Cladosporium resinae increased net fixation of the [14C] label compared to plants grown under sterile conditions. Inoculation also increased root exudation. The use of the microcosm was illustrated and its applications discussed. © 1991 Kluwer Academic Publishers.
Resumo:
Rationale
Previous research on attention bias in nondependent social drinkers has focused on adult samples with limited focus on the presence of attention bias for alcohol cues in adolescent social drinkers.
Objectives
The aim of this study was to examine the presence of alcohol attention bias in adolescents and the relationship of this cognitive bias to alcohol use and alcohol-related expectancies.
Methods
Attention bias in adolescent social drinkers and abstainers was measured using an eye tracker during exposure to alcohol and neutral cues. Questionnaires measured alcohol use and explicit alcohol expectancies.
Results
Adolescent social drinkers spent significantly more time fixating to alcohol stimuli compared to controls. Total fixation time to alcohol stimuli varied in accordance with level of alcohol consumption and was significantly associated with more positive alcohol expectancies. No evidence for automatic orienting to alcohol stimuli was found in adolescent social drinkers.
Conclusion
Attention bias in adolescent social drinkers appears to be underpinned by controlled attention suggesting that whilst participants in this study displayed alcohol attention bias comparable to that reported in adult studies, the bias has not developed to the point of automaticity. Initial fixations appeared to be driven by alternative attentional processes which are discussed further.
Resumo:
Biodegradable polymers, such as PLA (Polylactide), come from renewable resources like corn starch and if disposed of correctly, degrade and become harmless to the ecosystem making them attractive alternatives to petroleum based polymers. PLA in particular is used in a variety of applications including medical devices, food packaging and waste disposal packaging. However, the industry faces challenges in melt processing of PLA due to its poor thermal stability which is influenced by processing temperatures and shearing.
Identification and control of suitable processing conditions is extremely challenging, usually relying on trial and error, and often sensitive to batch to batch variations. Off-line assessment in a lab environment can result in high scrap rates, long lead times and lengthy and expensive process development. Scrap rates are typically in the region of 25-30% for medical grade PLA costing between €2000-€5000/kg.
Additives are used to enhance material properties such as mechanical properties and may also have a therapeutic role in the case of bioresorbable medical devices, for example the release of calcium from orthopaedic implants such as fixation screws promotes healing. Additives can also reduce the costs involved as less of the polymer resin is required.
This study investigates the scope for monitoring, modelling and optimising processing conditions for twin screw extrusion of PLA and PLA w/calcium carbonate to achieve desired material properties. A DAQ system has been constructed to gather data from a bespoke measurement die comprising melt temperature; pressure drop along the length of the die; and UV-Vis spectral data which is shown to correlate to filler dispersion. Trials were carried out under a range of processing conditions using a Design of Experiments approach and samples were tested for mechanical properties, degradation rate and the release rate of calcium. Relationships between recorded process data and material characterisation results are explored.