933 resultados para FACIAL EMOTIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a prior knowledge representation for Artificial General Intelligence is proposed based on fuzzy rules using linguistic variables. These linguistic variables may be produced by neural network. Rules may be used for generation of basic emotions – positive and negative, which influence on planning and execution of behavior. The representation of Three Laws of Robotics as such prior knowledge is suggested as highest level of motivation in AGI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study explores the linkages between culture, emotions and behavioural tendencies in unsuccessful intercultural business negotiations. A set of novel research hypotheses are developed. They are tested using a negotiation scenario analysis involving 106 Finnish and 114 Indian study participants. Three key findings emerge from the statistical tests conducted. First, new empirical evidence suggesting that qualitatively different emotions (dejection vs. agitation) are experienced after a failed intercultural business negotiation by individualists and collectivists is provided. Second, the existence of the relationship between perspective-taking ability and emotional volatility in the context of failed intercultural business negotiation involving individualists and collectivists is revealed. Third, partial support is found for the idea that different types of negative emotions can lead to the same behavioural tendency (approach) among individualists and collectivists when intercultural business negotiation fails. The paper concludes by outlining a set of theoretical and managerial implications and suggestions for further research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years there has been an increasing use of visual methods in ageing research. There are, however, limited reflections and critical explorations of the implications of using visual methods in research with people in mid to later life. This paper examines key methodological complexities when researching the daily lives of people as they grow older and the possibilities and limitations of using participant-generated visual diaries. The paper will draw on our experiences of an empirical study, which included a sample of 62 women and men aged 50 years and over with different daily routines. Participant-led photography was drawn upon as a means to create visual diaries, followed by in-depth, photo-elicitation interviews. The paper will critically reflect on the use of visual methods for researching the daily lives of people in mid to later life, as well as suggesting some wider tensions within visual methods that warrant attention. First, we explore the extent to which photography facilitates a ‘collaborative’ research process; second, complexities around capturing the ‘everydayness’ of daily routines are explored; third, the representation and presentation of ‘self’ by participants within their images and interview narratives is examined; and, finally, we highlight particular emotional considerations in visualising daily life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Holistic face perception, i.e. the mandatory integration of featural information across the face, hasbeen considered to play a key role when recognizing emotional face expressions (e.g., Tanaka et al.,2002). However, despite their early onset holistic processing skills continue to improvethroughout adolescence (e.g., Schwarzer et al., 2010) and therefore might modulate theevaluation of facial expressions. We tested this hypothesis using an attentional blink (AB)paradigm to compare the impact of happy, fearful and neutral faces in adolescents (10–13 years)and adults on subsequently presented neutral target stimuli (animals, plants and objects) in a rapidserial visual presentation stream. Adolescents and adults were found to be equally reliable whenreporting the emotional expression of the face stimuli. However, the detection of emotional butnot neutral faces imposed a significantly stronger AB effect on the detection of the neutral targetsin adults compared to adolescents. In a control experiment we confirmed that adolescents ratedemotional faces lower in terms of valence and arousal than adults. The results suggest a protracteddevelopment of the ability to evaluate facial expressions that might be attributed to the latematuration of holistic processing skills.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Police often use facial composites during their investigations, yet research suggests that facial composites are generally not effective. The present research included two experiments on facial composites. The first experiment was designed to test the usefulness of the encoding specificity principle for determining when facial composites will be effective. Instructions were used to encourage holistic or featural cues at encoding. The method used to construct facial composites was manipulated to encourage holistic or featural cues at retrieval. The encoding specificity principle suggests that an interaction effect should occur. If the same cues are used at encoding and retrieval, better composites should be constructed than when the cues are not the same. However, neither the expected interaction nor the main effects for encoding and retrieval were significant. The second study was conducted to assess the effectiveness of composites generated by two different facial composite construction systems, E-Fit and Mac-A-Mug Pro. These systems differ in that the E-Fit system uses more sophisticated methods of composite construction and may construct better quality facial composites. A comparison of E-Fit and Mac-A-Mug Pro composites demonstrated that E-Fit composites were of better quality than Mac-A-Mug Pro composites. However, neither E-Fit nor Mac-A-Mug Pro composites were useful for identifying the target person from a photograph lineup. Further, lineup performance was at floor level such that both E-Fit and Mac-A-Mug Pro composites were no more useful than a verbal description. Possible limitations of the studies are discussed, as well as suggestions for future research. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation develops an image processing framework with unique feature extraction and similarity measurements for human face recognition in the thermal mid-wave infrared portion of the electromagnetic spectrum. The goals of this research is to design specialized algorithms that would extract facial vasculature information, create a thermal facial signature and identify the individual. The objective is to use such findings in support of a biometrics system for human identification with a high degree of accuracy and a high degree of reliability. This last assertion is due to the minimal to no risk for potential alteration of the intrinsic physiological characteristics seen through thermal infrared imaging. The proposed thermal facial signature recognition is fully integrated and consolidates the main and critical steps of feature extraction, registration, matching through similarity measures, and validation through testing our algorithm on a database, referred to as C-X1, provided by the Computer Vision Research Laboratory at the University of Notre Dame. Feature extraction was accomplished by first registering the infrared images to a reference image using the functional MRI of the Brain’s (FMRIB’s) Linear Image Registration Tool (FLIRT) modified to suit thermal infrared images. This was followed by segmentation of the facial region using an advanced localized contouring algorithm applied on anisotropically diffused thermal images. Thermal feature extraction from facial images was attained by performing morphological operations such as opening and top-hat segmentation to yield thermal signatures for each subject. Four thermal images taken over a period of six months were used to generate thermal signatures and a thermal template for each subject, the thermal template contains only the most prevalent and consistent features. Finally a similarity measure technique was used to match signatures to templates and the Principal Component Analysis (PCA) was used to validate the results of the matching process. Thirteen subjects were used for testing the developed technique on an in-house thermal imaging system. The matching using an Euclidean-based similarity measure showed 88% accuracy in the case of skeletonized signatures and templates, we obtained 90% accuracy for anisotropically diffused signatures and templates. We also employed the Manhattan-based similarity measure and obtained an accuracy of 90.39% for skeletonized and diffused templates and signatures. It was found that an average 18.9% improvement in the similarity measure was obtained when using diffused templates. The Euclidean- and Manhattan-based similarity measure was also applied to skeletonized signatures and templates of 25 subjects in the C-X1 database. The highly accurate results obtained in the matching process along with the generalized design process clearly demonstrate the ability of the thermal infrared system to be used on other thermal imaging based systems and related databases. A novel user-initialization registration of thermal facial images has been successfully implemented. Furthermore, the novel approach at developing a thermal signature template using four images taken at various times ensured that unforeseen changes in the vasculature did not affect the biometric matching process as it relied on consistent thermal features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The understanding of emotions and learning in the participants of breast cancer support groups will assist in better preparation of how to cope with the disease these patients face. It is in working through emotional experiences that participants are able to learn and grow in support groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adult educators are only beginning to understand the interaction between learning and emotion (Dirkx, 2006; O’Regan, 2003). Understanding these concepts and their interaction through the constructivist perspective presents a unique opportunity to appreciate the learner’s perspective and the construction of knowledge through experience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of studies in the areas of Biomedical Engineering and Health Sciences have employed machine learning tools to develop methods capable of identifying patterns in different sets of data. Despite its extinction in many countries of the developed world, Hansen’s disease is still a disease that affects a huge part of the population in countries such as India and Brazil. In this context, this research proposes to develop a method that makes it possible to understand in the future how Hansen’s disease affects facial muscles. By using surface electromyography, a system was adapted so as to capture the signals from the largest possible number of facial muscles. We have first looked upon the literature to learn about the way researchers around the globe have been working with diseases that affect the peripheral neural system and how electromyography has acted to contribute to the understanding of these diseases. From these data, a protocol was proposed to collect facial surface electromyographic (sEMG) signals so that these signals presented a high signal to noise ratio. After collecting the signals, we looked for a method that would enable the visualization of this information in a way to make it possible to guarantee that the method used presented satisfactory results. After identifying the method's efficiency, we tried to understand which information could be extracted from the electromyographic signal representing the collected data. Once studies demonstrating which information could contribute to a better understanding of this pathology were not to be found in literature, parameters of amplitude, frequency and entropy were extracted from the signal and a feature selection was made in order to look for the features that better distinguish a healthy individual from a pathological one. After, we tried to identify the classifier that best discriminates distinct individuals from different groups, and also the set of parameters of this classifier that would bring the best outcome. It was identified that the protocol proposed in this study and the adaptation with disposable electrodes available in market proved their effectiveness and capability of being used in different studies whose intention is to collect data from facial electromyography. The feature selection algorithm also showed that not all of the features extracted from the signal are significant for data classification, with some more relevant than others. The classifier Support Vector Machine (SVM) proved itself efficient when the adequate Kernel function was used with the muscle from which information was to be extracted. Each investigated muscle presented different results when the classifier used linear, radial and polynomial kernel functions. Even though we have focused on Hansen’s disease, the method applied here can be used to study facial electromyography in other pathologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of studies in the areas of Biomedical Engineering and Health Sciences have employed machine learning tools to develop methods capable of identifying patterns in different sets of data. Despite its extinction in many countries of the developed world, Hansen’s disease is still a disease that affects a huge part of the population in countries such as India and Brazil. In this context, this research proposes to develop a method that makes it possible to understand in the future how Hansen’s disease affects facial muscles. By using surface electromyography, a system was adapted so as to capture the signals from the largest possible number of facial muscles. We have first looked upon the literature to learn about the way researchers around the globe have been working with diseases that affect the peripheral neural system and how electromyography has acted to contribute to the understanding of these diseases. From these data, a protocol was proposed to collect facial surface electromyographic (sEMG) signals so that these signals presented a high signal to noise ratio. After collecting the signals, we looked for a method that would enable the visualization of this information in a way to make it possible to guarantee that the method used presented satisfactory results. After identifying the method's efficiency, we tried to understand which information could be extracted from the electromyographic signal representing the collected data. Once studies demonstrating which information could contribute to a better understanding of this pathology were not to be found in literature, parameters of amplitude, frequency and entropy were extracted from the signal and a feature selection was made in order to look for the features that better distinguish a healthy individual from a pathological one. After, we tried to identify the classifier that best discriminates distinct individuals from different groups, and also the set of parameters of this classifier that would bring the best outcome. It was identified that the protocol proposed in this study and the adaptation with disposable electrodes available in market proved their effectiveness and capability of being used in different studies whose intention is to collect data from facial electromyography. The feature selection algorithm also showed that not all of the features extracted from the signal are significant for data classification, with some more relevant than others. The classifier Support Vector Machine (SVM) proved itself efficient when the adequate Kernel function was used with the muscle from which information was to be extracted. Each investigated muscle presented different results when the classifier used linear, radial and polynomial kernel functions. Even though we have focused on Hansen’s disease, the method applied here can be used to study facial electromyography in other pathologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Identifying biological markers to aid diagnosis of bipolar disorder (BD) is critically important. To be considered a possible biological marker, neural patterns in BD should be discriminant from those in healthy individuals (HI). We examined patterns of neuromagnetic responses revealed by magnetoencephalography (MEG) during implicit emotion-processing using emotional (happy, fearful, sad) and neutral facial expressions, in sixteen BD and sixteen age- and gender-matched healthy individuals. Methods: Neuromagnetic data were recorded using a 306-channel whole-head MEG ELEKTA Neuromag System, and preprocessed using Signal Space Separation as implemented in MaxFilter (ELEKTA). Custom Matlab programs removed EOG and ECG signals from filtered MEG data, and computed means of epoched data (0-250ms, 250-500ms, 500-750ms). A generalized linear model with three factors (individual, emotion intensity and time) compared BD and HI. A principal component analysis of normalized mean channel data in selected brain regions identified principal components that explained 95% of data variation. These components were used in a quadratic support vector machine (SVM) pattern classifier. SVM classifier performance was assessed using the leave-one-out approach. Results: BD and HI showed significantly different patterns of activation for 0-250ms within both left occipital and temporal regions, specifically for neutral facial expressions. PCA analysis revealed significant differences between BD and HI for mild fearful, happy, and sad facial expressions within 250-500ms. SVM quadratic classifier showed greatest accuracy (84%) and sensitivity (92%) for neutral faces, in left occipital regions within 500-750ms. Conclusions: MEG responses may be used in the search for disease specific neural markers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

What role does socialization play in the origins of prosocial behavior? We examined one potential socialization mechanism, parents' discourse about others' emotions with very young children in whom prosocial behavior is still nascent. Two studies are reported, one of sharing in 18- and 24-month-olds (n = 29), and one of instrumental and empathy-based helping in 18- and 30-month-olds (n = 62). In both studies, parents read age-appropriate picture books to their children and the content and structure of their emotion-related and internal state discourse were coded. Results showed that children who helped and shared more quickly and more often, especially in tasks that required more complex emotion understanding, had parents who more often asked them to label and explain the emotions depicted in the books. Moreover, it was parents' elicitation of children's talk about emotions rather than parents' own production of emotion labels and explanations that explained children's prosocial behavior, even after controlling for age. Thus, it is the quality, not the quantity, of parents' talk about emotions with their toddlers that matters for early prosocial behavior.