910 resultados para Escape of exotic organisms
Resumo:
Coccolithophorids are enigmatic plankton that produce calcium carbonate coccoliths, which over geological time have buried atmospheric CO2 into limestone, changing both the atmosphere and geology of the Earth. However, the role of coccoliths for the proliferation of these organisms remains unclear; suggestions include roles in anti-predation, enhanced photosynthesis and sun-screening. Here we test the hypothesis that calcification stabilizes the pH of the seawater proximate to the organisms, providing a level of acidification countering the detrimental basification that occurs during net photosynthesis. Such bioengineering provides a more stable pH environment for growth and fits the empirical evidence for changes in rates of calcification under different environmental conditions. Under this scenario, simulations suggest that the optimal production ratio of inorganic to organic particulate C (PIC : POCprod) will be lower (by approx. 20%) with ocean acidification and that overproduction of coccoliths in a future acidified ocean, where pH buffering is weaker, presents a risk to calcifying cells.
Resumo:
This paper gives a brief account of the attempt by the German zoologist Christian Andreas Viktor Hensen to quantify the amount of floating organisms in the sea, which he defined for the first time as plankton. To do this, he invented new collecting and analysing methods, and in 1887 led the first major German oceanographic expedition. Despite arousing criticisms, his methods influenced others to begin quantitative sampling and led to his recognition as one of the founders of ecology.
Resumo:
This paper gives a brief account of the attempt by the German zoologist Christian Andreas Viktor Hensen to quantify the amount of floating organisms in the sea, which he defined for the first time as plankton. To do this, he invented new collecting and analysing methods, and in 1887 led the first major German oceanographic expedition. Despite arousing criticisms, his methods influenced others to begin quantitative sampling and led to his recognition as one of the founders of ecology.
Resumo:
Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the biosphere. The ongoing environmental metabarcoding revolution opens the perspective for holistic ecosystems biological studies of these organisms, in particular the unicellular microalgae that often lack distinctive morphological characters and have complex life cycles. To interpret environmental sequences, metabarcoding necessarily relies on taxonomically curated databases containing reference sequences of the targeted gene (or barcode) from identified organisms. To date, no such reference framework exists for photosynthetic eukaryotes. In this study, we built the PhytoREF database that contains 6490 plastidial 16S rDNA reference sequences that originate from a large diversity of eukaryotes representing all known major photosynthetic lineages. We compiled 3333 amplicon sequences available from public databases and 879 sequences extracted from plastidial genomes, and generated 411 novel sequences from cultured marine microalgal strains belonging to different eukaryotic lineages. A total of 1867 environmental Sanger 16S rDNA sequences were also included in the database. Stringent quality filtering and a phylogeny-based taxonomic classification were applied for each 16S rDNA sequence. The database mainly focuses on marine microalgae, but sequences from land plants (representing half of the PhytoREF sequences) and freshwater taxa were also included to broaden the applicability of PhytoREF to different aquatic and terrestrial habitats. PhytoREF, accessible via a web interface (http://phytoref.fr), is a new resource in molecular ecology to foster the discovery, assessment and monitoring of the diversity of photosynthetic eukaryotes using high-throughput sequencing.
Resumo:
Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the biosphere. The ongoing environmental metabarcoding revolution opens the perspective for holistic ecosystems biological studies of these organisms, in particular the unicellular microalgae that often lack distinctive morphological characters and have complex life cycles. To interpret environmental sequences, metabarcoding necessarily relies on taxonomically curated databases containing reference sequences of the targeted gene (or barcode) from identified organisms. To date, no such reference framework exists for photosynthetic eukaryotes. In this study, we built the PhytoREF database that contains 6490 plastidial 16S rDNA reference sequences that originate from a large diversity of eukaryotes representing all known major photosynthetic lineages. We compiled 3333 amplicon sequences available from public databases and 879 sequences extracted from plastidial genomes, and generated 411 novel sequences from cultured marine microalgal strains belonging to different eukaryotic lineages. A total of 1867 environmental Sanger 16S rDNA sequences were also included in the database. Stringent quality filtering and a phylogeny-based taxonomic classification were applied for each 16S rDNA sequence. The database mainly focuses on marine microalgae, but sequences from land plants (representing half of the PhytoREF sequences) and freshwater taxa were also included to broaden the applicability of PhytoREF to different aquatic and terrestrial habitats. PhytoREF, accessible via a web interface (http://phytoref.fr), is a new resource in molecular ecology to foster the discovery, assessment and monitoring of the diversity of photosynthetic eukaryotes using high-throughput sequencing.
Resumo:
Most living organisms are constantly exposed to potentially harmful pathogens. It is the immune system of the organism that enables it to survive in an environment loaded with dangerous pathogenic microorganisms. The innate immunity provides organisms with a rapid and non-specific first line of defense against pathogens. It includes physical barriers such as skin and mucous membranes and chemical barriers including the high acidity of gastric juice, and specialized soluble molecules that possess antimicrobial activity. One of the well-known innate immune defense mechanisms is the production of antimicrobial substances by specific cells or tissues of the organisms. Antimicrobial peptides (AMPs) are such natural substances that
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
General knowledge of the small, invisible, or hidden organisms that make soil one of the most biodiverse habitats on Earth is thought to be scarce, despite their importance in food systems and agricultural production. We provide the first worldwide review of high-quality research that reports on farmers’ knowledge of soil organisms in agriculture. The depth of farmers’ knowledge varied; some farming communities held detailed local taxonomies and observations of soil biota, or used soil biological activity as indicators of soil fertility, while others were largely unaware of soil fauna. Elicitation of soil biota knowledge was often incidental to the main research goal in many of the reviewed studies. Farmers are rarely deliberately or deeply consulted by researchers on their existing knowledge of soil biota, soil ecology, or soil ecological processes. Deeper understanding of how farmers use and value soil life can lead to more effective development of collaborative extension programs, policies, and management initiatives directed at maintaining healthy, living soils.
Resumo:
This paper discusses the advantages of using a combined environmagnetic and geochemical approach to the provenance and characterization of distal IRDs occurring during the Last Glacial Period in core CI12PC3 from the Galicia Interior Basin (GIB). Six Heinrich layers (HL1-6) have been identified in the area in base to the detection of distinct populations of exotic magnetic mineral assemblages alien to the local/regional sedimentation environment. Their extension has been determined by Ca/Sr and Si/Sr ratios and their provenance by 143Nd/144Nd and 87Sr/86Sr isotopic ratios and FORCs. The sedimentary expression of HL is characterized by the presence of distal Ice Rafted Detritus (IRD). Distal IRD magnetic signatures in the GIB consist of (i) an increase of one order of magnitude in the peak amplitude of magnetic susceptibility from background values, (ii) a general coarsening of the magnetic grain size in a mineral assemblage dominated by titano-magnetites, (iii) FORC distributions pushing towards the coarse MD or PSD component, and (iv) thermomagnetic curves depicting the occurrence of several magnetite phases. These four features are very different from the fine-grained biogenic magnetic assemblages characterized by the combination of lower MS and higher coercivity values that dominate the predominant mixtures of the non-interacting SSD and PSD components in the non-IRD influenced background sedimentation. Our results show that the last 70.000 yr of sedimentation in the GIB were controlled by the relative contribution of local detrital material derived from the Iberian Variscan Chain and IRD alien material from the iceberg melting during the Heinrich Events. They also show two main IRD provenance fields: Europe and Canada. And that the later is more important for for HL1, HL2, HL4 and HL5. FORCs analysis complemented the isotopic information and provided a very unique information, indicating that glacial flour may not always have the same provenance as IRD and that ice-melted derived suspended sediment has its own dynamics and may reach further and/or persists longer than IRD.
Resumo:
The correct development of multicellular organisms depends upon the perception of signals secreted by cells in order to co-ordinate cell differentiation. The Physcomitrella patens genome encodes many components of potential signaling systems, including putative receptor proteins and putative secreted protein ligands, yet at present little characterization of these proteins has been carried out. We are currently attempting to characterize the expression pattern and function of a family of 6 secreted proteins exhibiting homology to PrsS, the ligand that controls self-incompatibility (SI) in Papaver rhoeas (field poppy). In poppy, PrsS interacts a receptor on the surface of pollen tubes, PrpS causing SI by programmed cell death. Homologues of this protein (SPH – S-Protein Homologues) exist in dicotyledonous plants and bryophytes but not in other plant taxa. We aim to determine spatiotemporal expression differences between these proteins via reporter gene analysis and qPCR of cDNA. In addition we are in the process of creating targeted gene knockouts for all 6 of the genes in P. patens. We are also searching for receptors of PrpS in Physcomitrella using a bioinformatic strategy alongside phage display. In accomplishing this we hope to determine the function of a small novel secreted protein family in Physcomitrella but in addition we also hope to elucidate the function of SPH proteins in Arabidopsis.
Resumo:
Biofuel plants such as Jatropha curcas L. have potential to support the livelihoods of rural communities and contribute to sustainable rural development in Africa, if risks and uncertainties are minimized. Yet, recent papers have warned of the risk of biological invasions in such tropical regions as a consequence of the introduction of exotic biofuel crops. We investigated the seed dispersal risk and invasiveness potential of both J. curcas monoculture plantations and live fences into adjacent cultivated and uncultivated land use systems in Sissili province, Burkina Faso. Invasiveness potential was assessed through (i) detecting evidence of natural regeneration in perimeters around J. curcas plantations and live fences, (ii) assessing seed dispersal mechanisms, and (iii) assessing seedling establishment potential through in situ direct seed sowing. Spontaneous regeneration around the plantation perimeters of the three sites was very low. Individual seedling density around J. curcas live fences was less than 0.01 m−2 in all sites. Seventy percent of the seedlings were found close to the live fence and most of them derived from the same year (96 %), which indicates low seed-bank longevity and seedling survival. J. curcas can be dispersed by small mammals and arthropods, particularly rodents and ants. In some sites, such as in Onliassan, high secondary seed dispersal by animals (up to 98 %) was recorded. There were highly significant differences in germination rates between seeds at the soil surface (11 %) and those buried artificially at 1–2-cm depth (64 %). In conclusion, we failed to find convincing evidence of the spreading of J. curcas or any significant impact on the surrounding environment.
Resumo:
The erosion processes resulting from flow of fluids (gas-solid or liquid-solid) are encountered in nature and many industrial processes. The common feature of these erosion processes is the interaction of the fluid (particle) with its boundary thus resulting in the loss of material from the surface. This type of erosion in detrimental to the equipment used in pneumatic conveying systems. The puncture of pneumatic conveyor bends in industry causes several problems. Some of which are: (1) Escape of the conveyed product causing health and dust hazard; (2) Repairing and cleaning up after punctures necessitates shutting down conveyors, which will affect the operation of the plant, thus reducing profitability. The most common occurrence of process failure in pneumatic conveying systems is when pipe sections at the bends wear away and puncture. The reason for this is particles of varying speed, shape, size and material properties strike the bend wall with greater intensity than in straight sections of the pipe. Currently available models for predicting the lifetime of bends are inaccurate (over predict by 80%. The provision of an accurate predictive method would lead to improvements in the structure of the planned maintenance programmes of processes, thus reducing unplanned shutdowns and ultimately the downtime costs associated with these unplanned shutdowns. This is the main motivation behind the current research. The paper reports on two aspects of the first phases of the study-undertaken for the current project. These are (1) Development and implementation; and (2) Testing of the modelling environment. The model framework encompasses Computational Fluid Dynamics (CFD) related engineering tools, based on Eulerian (gas) and Lagrangian (particle) approaches to represent the two distinct conveyed phases, to predict the lifetime of conveyor bends. The method attempts to account for the effect of erosion on the pipe wall via particle impacts, taking into account the angle of attack, impact velocity, shape/size and material properties of the wall and conveyed material, within a CFD framework. Only a handful of researchers use CFD as the basis of predicting the particle motion, see for example [1-4] . It is hoped that this would lead to more realistic predictions of the wear profile. Results, for two, three-dimensional test cases using the commercially available CFD PHOENICS are presented. These are reported in relation to the impact intensity and sensitivity to the inlet particle distributions.
Resumo:
The spread of invasive organisms is one of the greatest threats to ecosystems and biodiversity worldwide. Understanding the evolutionary and ecological factors responsible for the transport, introduction, establishment and spread of invasive species will assist the development of control strategies. The New Zealand mudsnail, Potamopyrgus antipodarum (Gray 1843) (Gastropoda: Hydrobiidae), is a global freshwater invader, with populations established in Europe, Asia, the Americas and Australia. While sexual and asexual P. antipodarum coexist in the native range, invasive populations reproduce by parthenogenesis, producing dense populations that compete for resources with native species. Potamopyrgus antipodarum is a natural model system for the study of evolutionary and ecological processes underlying invasion. This thesis assesses the invasion history, genetic diversity and ecology of P. antipodarum in Australia, with particular focus on: a) potential source populations, b) distribution and structure of populations, and c) species traits related to the establishment, persistence and spread of invasive P. antipodarum. Genetic analyses were carried out on specimens collected for this study from New Zealand and Australia, along with existing museum samples. In combination with published data, the analyses revealed low genetic diversity among and within invasive populations in south-eastern Australia, relative to New Zealand populations. Phylogenetic relationships inferred from mitochondrial sequences indicated that the Australian populations belong to clades dominated by parthenogenetic haplotypes that are known to be present in Europe and the US. These ‘invasive clades’ are likely to originate from the North Island of New Zealand, and suggest a role for selection in determining genetic composition of invasive populations. The genotypic diversity of Australian P. antipodarum was low, with few, closely related clones distributed across south-eastern Australia. The pattern of clone distribution was not consistent with any assessed geographical or abiotic factors; instead a few, widely-distributed clones were present in high frequencies at most sites. Differences in clone frequencies were found, which may indicate differential success of clonal lineages. A range of traits have been proposed as facilitators of invasion success, and within-species variation in these traits can promote differential success of genotypes. Using laboratory-based experiments, the performance of the three most common Australian clones was tested across a suite of invasion-relevant traits. Ecologically-relevant variation in traits was found among the clones. These differences may have determined the spatial distribution of clones, and may continue to do so into the future. This thesis found that the P. antipodarum invasion of Australia is the result of few introductions of a small number of globally-invasive genotypes that vary in ecologically-relevant traits. From a source of considerable genetic diversity in the native range, very few genotypes have become invasive. Those that are invasive appear to be very successful at continental scales. These findings highlight a capacity in asexual invaders to successfully invade, and potentially adapt to, a broad range of ecosystems. The P. antipodarum invasion system is amenable to research using combinations of field-based studies, molecular and laboratory approaches, and is likely to yield significant, broadly-applicable insights into invasion.
Resumo:
The protozoan parasite Marteilia refringens has been partly responsible for the severe decrease in the production of the European flat oyster Ostrea edulis Linnaeus in France since the 1970s. The calanoid copepod Paracartia grani Sars was recently found to be a host for M refringens in French shallow-water oyster ponds ('claires'). This study reconsidered M refringens transmission dynamics in the light of this finding, taking into account not only oyster infection dynamics and environmental factors but also data concerning the copepod host. P. grani population dynamics in the claire under study revealed that this species is the dominant planktonic copepod in this confined ecosystem. During winter, M refringens overwintered in O. edulis, with P. grani existing only as resting eggs in the sediment. The increase in temperature in spring controlled and synchronized both the release of M refringens sporangia in the oyster feces, and the hatching of the benthic resting eggs of the copepod. Infection of oysters by M refringens was limited to June, July and August, coinciding with (1) the highest temperature recorded in the claire, and (2) the highest abundance of P. grani. PCR detection of M refringens in P. grani during the summer period was linked to the release of parasite sporangia by the oyster. Our results are supported by previous results on the effective transmission of this parasite from the oyster to the copepod.
Resumo:
The description of all the species present in nature is a vast task to be fulfilled by using the classical approach of morphological description of the organisms. In recent years, the traditional taxonomy, based primarily on identification keys of species, has shown a number of limitations in the use of the distinctive features in many animal taxa and inconsistencies with the genetic data. Furthermore, the increasing need to get a true estimate of biodiversity has led Zoological Taxonomy to seek new approaches and methodologies to support the traditional methods. The classification procedure has added modern criteriasuch as the evolutionary relationships and the genetic, biochemical and morphological characteristics of the organisms.Until now the Linnean binomial was the only abbreviated code associated with the description of the morphology of a species. The new technologies aim to achieve a short nucleotide sequence of the DNA to be used as an unique and solely label for a particular species, a specific genetic barcode. For both morphological and genetic approaches, skills and experience are required. Taxonomy is one of zoological disciplines that has been benefited from the achievements reached by modern molecular biotechnology. Using a molecular approach it is possible to identify cryptic species, to establish a family relationship between species and their membership of taxonomic categories or to reconstruct the evolutionary history of a taxon.