963 resultados para Engineering, Industrial|Engineering, System Science|Operations Research
Resumo:
In this paper an approach is presented for identification of a reduced model for coherent areas in power systems using phasor measurement units to represent the inter-area oscillations of the system. The generators which are coherent in a wide range of operating conditions form the areas in power systems and the reduced model is obtained by representing each area by an equivalent machine. The reduced nonlinear model is then identified based on the data obtained from measurement units. The simulation is performed on three test systems and the obtained results show high accuracy of identification process.
Resumo:
Frequency Domain Spectroscopy (FDS) is used to assess the insulation condition of oil-paper power transformers. Dissipation factor is one of the conventional indicators to analyze insulation ageing status. In this paper, the imaginary admittance of the transformers insulation, after removal of the geometric capacitance, is proposed as an alternative indicator to assist in the interpretation of ageing status. Ageing effects on the imaginary admittance are investigated both through simulation results and experimental results.
Resumo:
To minimise the number of load sheddings in a microgrid (MG) during autonomous operation, islanded neighbour MGs can be interconnected if they are on a self-healing network and an extra generation capacity is available in the distributed energy resources (DER) of one of the MGs. In this way, the total load in the system of interconnected MGs can be shared by all the DERs within those MGs. However, for this purpose, carefully designed self-healing and supply restoration control algorithm, protection systems and communication infrastructure are required at the network and MG levels. In this study, first, a hierarchical control structure is discussed for interconnecting the neighbour autonomous MGs where the introduced primary control level is the main focus of this study. Through the developed primary control level, this study demonstrates how the parallel DERs in the system of multiple interconnected autonomous MGs can properly share the load of the system. This controller is designed such that the converter-interfaced DERs operate in a voltage-controlled mode following a decentralised power sharing algorithm based on droop control. DER converters are controlled based on a per-phase technique instead of a conventional direct-quadratic transformation technique. In addition, linear quadratic regulator-based state feedback controllers, which are more stable than conventional proportional integrator controllers, are utilised to prevent instability and weak dynamic performances of the DERs when autonomous MGs are interconnected. The efficacy of the primary control level of the DERs in the system of multiple interconnected autonomous MGs is validated through the PSCAD/EMTDC simulations considering detailed dynamic models of DERs and converters.
Resumo:
Low speed rotating machines which are the most critical components in drive train of wind turbines are often menaced by several technical and environmental defects. These factors contribute to mount the economic requirement for Health Monitoring and Condition Monitoring of the systems. When a defect is happened in such system result in reduced energy loss rates from related process and due to it Condition Monitoring techniques that detecting energy loss are very difficult if not possible to use. However, in the case of Acoustic Emission (AE) technique this issue is partly overcome and is well suited for detecting very small energy release rates. Acoustic Emission (AE) as a technique is more than 50 years old and in this new technology the sounds associated with the failure of materials were detected. Acoustic wave is a non-stationary signal which can discover elastic stress waves in a failure component, capable of online monitoring, and is very sensitive to the fault diagnosis. In this paper the history and background of discovering and developing AE is discussed, different ages of developing AE which include Age of Enlightenment (1950-1967), Golden Age of AE (1967-1980), Period of Transition (1980-Present). In the next section the application of AE condition monitoring in machinery process and various systems that applied AE technique in their health monitoring is discussed. In the end an experimental result is proposed by QUT test rig which an outer race bearing fault was simulated to depict the sensitivity of AE for detecting incipient faults in low speed high frequency machine.
Resumo:
This paper presents a new hybrid evolutionary algorithm based on Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) for daily Volt/Var control in distribution system including Distributed Generators (DGs). Due to the small X/R ratio and radial configuration of distribution systems, DGs have much impact on this problem. Since DGs are independent power producers or private ownership, a price based methodology is proposed as a proper signal to encourage owners of DGs in active power generation. Generally, the daily Volt/Var control is a nonlinear optimization problem. Therefore, an efficient hybrid evolutionary method based on Particle Swarm Optimization and Ant Colony Optimization (ACO), called HPSO, is proposed to determine the active power values of DGs, reactive power values of capacitors and tap positions of transformers for the next day. The feasibility of the proposed algorithm is demonstrated and compared with methods based on the original PSO, ACO and GA algorithms on IEEE 34-bus distribution feeder.
Resumo:
Safety concerns in the operation of autonomous aerial systems require safe-landing protocols be followed during situations where the mission should be aborted due to mechanical or other failure. This article presents a pulse-coupled neural network (PCNN) to assist in the vegetation classification in a vision-based landing site detection system for an unmanned aircraft. We propose a heterogeneous computing architecture and an OpenCL implementation of a PCNN feature generator. Its performance is compared across OpenCL kernels designed for CPU, GPU, and FPGA platforms. This comparison examines the compute times required for network convergence under a variety of images to determine the plausibility for real-time feature detection.
Resumo:
Integration of rooftop PVs and increasing peak demand in the residential distribution networks has resulted in unacceptable voltage profile. Curtailing PV generation to alleviate overvoltage problem and making regular network investment to cater peak demand is not always feasible. Reactive capability of the PV inverter can be a solution to address voltage dip and over voltage problems to some extent. This paper proposes an algorithm to utilize reactive capability of PV inverters and investigate their effectiveness on feeder length and R/X ratio of the line. Feeder loading level for a particular R/X ratio to have acceptable voltage profile is also investigated. Furthermore, the need of appropriate feeder distances and R/X ratio for acceptable voltage profile, which can be useful for suburban design and distribution planning, is explored.
Resumo:
Several websites utilise a rule-base recommendation system, which generates choices based on a series of questionnaires, for recommending products to users. This approach has a high risk of customer attrition and the bottleneck is the questionnaire set. If the questioning process is too long, complex or tedious; users are most likely to quit the questionnaire before a product is recommended to them. If the questioning process is short; the user intensions cannot be gathered. The commonly used feature selection methods do not provide a satisfactory solution. We propose a novel process combining clustering, decisions tree and association rule mining for a group-oriented question reduction process. The question set is reduced according to common properties that are shared by a specific group of users. When applied on a real-world website, the proposed combined method outperforms the methods where the reduction of question is done only by using association rule mining or only by observing distribution within the group.
Resumo:
This paper describes the development of small low-cost cooperative robots for sustainable broad-acre agriculture to increase broad-acre crop production and reduce environmental impact. The current focus of the project is to use robotics to deal with resistant weeds, a critical problem for Australian farmers. To keep the overall system affordable our robot uses low-cost cameras and positioning sensors to perform a large scale coverage task while also avoiding obstacles. A multi-robot coordinator assigns parts of a given field to individual robots. The paper describes the modification of an electric vehicle for autonomy and experimental results from one real robot and twelve simulated robots working in coordination for approximately two hours on a 55 hectare field in Emerald Australia. Over this time the real robot 'sprayed' 6 hectares missing 2.6% and overlapping 9.7% within its assigned field partition, and successfully avoided three obstacles.
Resumo:
We construct two efficient Identity-Based Encryption (IBE) systems that admit selective-identity security reductions without random oracles in groups equipped with a bilinear map. Selective-identity secure IBE is a slightly weaker security model than the standard security model for IBE. In this model the adversary must commit ahead of time to the identity that it intends to attack, whereas in an adaptive-identity attack the adversary is allowed to choose this identity adaptively. Our first system—BB1—is based on the well studied decisional bilinear Diffie–Hellman assumption, and extends naturally to systems with hierarchical identities, or HIBE. Our second system—BB2—is based on a stronger assumption which we call the Bilinear Diffie–Hellman Inversion assumption and provides another approach to building IBE systems. Our first system, BB1, is very versatile and well suited for practical applications: the basic hierarchical construction can be efficiently secured against chosen-ciphertext attacks, and further extended to support efficient non-interactive threshold decryption, among others, all without using random oracles. Both systems, BB1 and BB2, can be modified generically to provide “full” IBE security (i.e., against adaptive-identity attacks), either using random oracles, or in the standard model at the expense of a non-polynomial but easy-to-compensate security reduction.
Resumo:
We construct an efficient identity based encryption system based on the standard learning with errors (LWE) problem. Our security proof holds in the standard model. The key step in the construction is a family of lattices for which there are two distinct trapdoors for finding short vectors. One trapdoor enables the real system to generate short vectors in all lattices in the family. The other trapdoor enables the simulator to generate short vectors for all lattices in the family except for one. We extend this basic technique to an adaptively-secure IBE and a Hierarchical IBE.
Resumo:
We study the natural problem of secure n-party computation (in the computationally unbounded attack model) of circuits over an arbitrary finite non-Abelian group (G,⋅), which we call G-circuits. Besides its intrinsic interest, this problem is also motivating by a completeness result of Barrington, stating that such protocols can be applied for general secure computation of arbitrary functions. For flexibility, we are interested in protocols which only require black-box access to the group G (i.e. the only computations performed by players in the protocol are a group operation, a group inverse, or sampling a uniformly random group element). Our investigations focus on the passive adversarial model, where up to t of the n participating parties are corrupted.
Resumo:
This paper describes the design and implementation of a wireless neural telemetry system that enables new experimental paradigms, such as neural recordings during rodent navigation in large outdoor environments. RoSco, short for Rodent Scope, is a small lightweight user-configurable module suitable for digital wireless recording from freely behaving small animals. Due to the digital transmission technology, RoSco has advantages over most other wireless modules of noise immunity and online user-configurable settings. RoSco digitally transmits entire neural waveforms for 14 of 16 channels at 20 kHz with 8-bit encoding which are streamed to the PC as standard USB audio packets. Up to 31 RoSco wireless modules can coexist in the same environment on non-overlapping independent channels. The design has spatial diversity reception via two antennas, which makes wireless communication resilient to fading and obstacles. In comparison with most existing wireless systems, this system has online user-selectable independent gain control of each channel in 8 factors from 500 to 32,000 times, two selectable ground references from a subset of channels, selectable channel grounding to disable noisy electrodes, and selectable bandwidth suitable for action potentials (300 Hz–3 kHz) and low frequency field potentials (4 Hz–3 kHz). Indoor and outdoor recordings taken from freely behaving rodents are shown to be comparable to a commercial wired system in sorting for neural populations. The module has low input referred noise, battery life of 1.5 hours and transmission losses of 0.1% up to a range of 10 m.
Resumo:
This paper describes a novel obstacle detection system for autonomous robots in agricultural field environments that uses a novelty detector to inform stereo matching. Stereo vision alone erroneously detects obstacles in environments with ambiguous appearance and ground plane such as in broad-acre crop fields with harvested crop residue. The novelty detector estimates the probability density in image descriptor space and incorporates image-space positional understanding to identify potential regions for obstacle detection using dense stereo matching. The results demonstrate that the system is able to detect obstacles typical to a farm at day and night. This system was successfully used as the sole means of obstacle detection for an autonomous robot performing a long term two hour coverage task travelling 8.5 km.
Resumo:
In this paper, we present a field trial of a pervasive system called Panorama that is aimed at supporting social awareness in work environments. Panorama is an intelligent situated display in the staff room of an academic department. It artistically represents non-critical user generated content such as images from holidays, conferences and other social gatherings, as well as textual messages on its display. It also captures images and videos from different public spaces of the department and streams them onto the Panorama screen, using appropriate abstraction techniques. We studied the use of Panorama for two weeks and observed how Panorama affected staff members' social awareness and community building. We report that Panorama simulated curiosity and learning, initiated new interactions and provided a mechanism for cherishing old memories.