862 resultados para Energy use
Resumo:
In this work, the use of a compliant web design for improved damage tolerance in stiffener run-outs is investigated. Firstly, a numerical study that incorporates the possibility of debonding and delamination (using VCCT) is used to select a favourable compliant run-out configuration. Then, three different configurations are compared to establish the merits of the compliant design: a baseline configuration, a configuration with optimised tapering and the selected compliant configuration. The performance of these configurations, in terms of strength and damage tolerance, was compared numerically using a parametric finite element analysis. The energy release rates for debonding and delamination, for different crack lengths across the specimen width, were used for this comparison. The three configurations were subsequently manufactured and tested. In order to monitor the failure process, acoustic emission (AE) equipment was used and proved valuable in the detection and analysis of failure. The predicted failure loads, based on the energy release rates, showed good agreement with the experiments, particularly when the distribution of energy release rate across the width of the specimen was taken into account. As predicted numerically, the compliant configuration failed by debonding and showed improved damage tolerance compared to the baseline and tapered stiffener run-outs.
Resumo:
The use of genetic algorithms (GAs) for structural optimisation is well established but little work has been reported on the inclusion of damage variables within an optimisation framework. This approach is particularly useful in the optimisation of composite structures which are prone to delamination damage. In this paper a challenging design problem is presented where the objective was to delay the catastrophic failure of a postbuckling secondary-bonded stiffened composite panel susceptible to secondary instabilities. It has been conjectured for some time that the sudden energy release associated with secondary instabilities may initiate structural failure, but this has proved difficult to observe experimentally. The optimisation methodology confirmed this indirectly by evolving a panel displaying a delayed secondary instability whilst meeting all other design requirements. This has important implication in the design of thin-skinned lightweight aerostructures which may exhibit this phenomenon.
Resumo:
The deployment of biofuels is significantly affected by policy in energy and agriculture. In the energy arena, concerns regarding the sustainability of biofuel systems and their impact on food prices led to a set of sustainability criteria in EU Directive 2009/28/EC on Renewable Energy. In addition, the 10% biofuels target by 2020 was replaced with a 10% renewable energy in transport target. This allows the share of renewable electricity used by electric vehicles to contribute to the mix in achieving the 2020 target. Furthermore, only biofuel systems that effect a 60% reduction in greenhouse gas emissions by 2020 compared with the fuel they replace are allowed to contribute to meeting the target. In the agricultural arena, cross-compliance (which is part of EU Common Agricultural Policy) dictates the allowable ratio of grassland to total agricultural land, and has a significant impact on which biofuels may be supported. This paper outlines the impact of these policy areas and their implications for the production and use of biofuels in terms of the 2020 target for 10% renewable transport energy, focusing on Ireland. The policies effectively impose constraints on many conventional energy crop biofuels and reinforce the merits of using biomethane, a gaseous biofuel. The analysis shows that Ireland can potentially satisfy 15% of renewable energy in transport by 2020 (allowing for double credit for biofuels from residues and ligno-cellulosic materials, as per Directive 2009/28/EC) through the use of indigenous biofuels: grass biomethane, waste and residue derived biofuels, electric vehicles and rapeseed biodiesel. © 2010 Elsevier Ltd. All rights reserved.
Resumo:
Biofuels have had bad press in recent years. There are primarily two distinct issues. The biofuel crops with the best yields (such as sugarcane or oil palm) grow in tropical countries where habitat destruction has occurred in association with the biofuel system. First generation indigenous energy crops commonly used for transport fuel in Europe (such as rapeseed and wheat) have low yields and/or the energy balance of the associated biofuel system is poor. This paper shows that grass is a crop with significant yields and grass biomethane (a gaseous renewable transport biofuel) has a very good energy balance and does not involve habitat destruction, land use change, new farming practices or annual tilling. The gross and net energy production per hectare are almost identical to palm oil biodiesel; the net energy of the grass system is at least 50% better than the next best indigenous European biofuel system investigated. Ten percent of Irish grasslands could fuel over 55% of the Irish private car fleet. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
Many scientific applications are programmed using hybrid programming models that use both message passing and shared memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that energy efficiency can be improved using software-controlled execution schemes that consider both the programming model and the power-aware execution capabilities of the system. However, such approaches have focused on identifying optimal resource utilization for one programming model, either shared memory or message passing, in isolation. The potential solution space, thus the challenge, increases substantially when optimizing hybrid models since the possible resource configurations increase exponentially. Nonetheless, with the accelerating adoption of hybrid programming models, we increasingly need improved energy efficiency in hybrid parallel applications on large-scale systems. In this work, we present new software-controlled execution schemes that consider the effects of dynamic concurrency throttling (DCT) and dynamic voltage and frequency scaling (DVFS) in the context of hybrid programming models. Specifically, we present predictive models and novel algorithms based on statistical analysis that anticipate application power and time requirements under different concurrency and frequency configurations. We apply our models and methods to the NPB MZ benchmarks and selected applications from the ASC Sequoia codes. Overall, we achieve substantial energy savings (8.74 percent on average and up to 13.8 percent) with some performance gain (up to 7.5 percent) or negligible performance loss.
Resumo:
The standard local density approximation and generalized gradient approximations fail to properly describe the dissociation of an electron pair bond, yielding large errors (on the order of 50 kcal/mol) at long bond distances. To remedy this failure, a self-consistent Kohn-Sham (KS) method is proposed with the exchange-correlation (xc) energy and potential depending on both occupied and virtual KS orbitals. The xc energy functional of Buijse and Baerends [Mol. Phys. 100, 401 (2002); Phys. Rev. Lett. 87, 133004 (2001)] is employed, which, based on an ansatz for the xc-hole amplitude, is able to reproduce the important dynamical and nondynamical effects of Coulomb correlation through the efficient use of virtual orbitals. Self-consistent calculations require the corresponding xc potential to be obtained, to which end the optimized effective potential (OEP) method is used within the common energy denominator approximation for the static orbital Green's function. The problem of the asymptotic divergence of the xc potential of the OEP when a finite number of virtual orbitals is used is addressed. The self-consistent calculations reproduce very well the entire H-2 potential curve, describing correctly the gradual buildup of strong left-right correlation in stretched H-2. (C) 2003 American Institute of Physics.
Resumo:
The use of the organic fraction of municipal solid waste crops has received considerable attention as a sustainable feedstock that can replace fossil fuels for the production of renewable energy. Therefore, municipal bin-waste in the form of hay was investigated as a potential energy crop for fermentable sugars production. Hydrolysis of hay by dilute phosphoric acid was carried out in autoclave parr reactor, where reactor temperature (135-200 degrees c) and acid concentration (2.5-10% (w/w)) were examined. Analysis of the decomposition rate of hemicellulosic biomass was undertaken using HPLC of the reaction products. Xylose production reached a maximum value of 13.5 g/100 g dry mass corresponding to a yield of 67% at the best identified conditions of 2.5 wt% H3PO4, 175 degrees C, 10 min reaction time, and at 5 wt% H3PO4, 150 degrees C, and 5 min reaction time. For glucose, an average yield of 25% was obtained at 5 wt% H3PO4, 175 degrees C and 30 min. Glucose degradation to HMF was achieved at 10 wt% H3PO4 and 200 degrees C. The maximum yield for produced arabinose was an average of 3 g/100 g dry. mass corresponding to 100% of the total possible arabinose. The kinetic study of the acid hydrolysis was also carried out using the Saeman and the Two-fraction models. It was found for both models that the kinetic constants (k) depend on the acid concentration and temperature. For xylose and arabinose it was found that the rate of formation was more favoured than the rate of degradation. By contrast, for glucose it was found that glucose degradation was occurring faster than glucose formation. It can be concluded that dilute phosphoric acid hydrolysis of hay crop is feasible for the production of fermentable sugars which are essential for bioethanol synthesis.
Resumo:
The planning system has been put forward as a key element in facilitating the low carbon transition (Bulkeley 2006, While 2008), by reducing carbon footprints through initiatives such as encouraging less-energy intensive development, reducing the need to travel or promoting sustainable forms of transport. It has also played a key role on encouraging a shift to more renewable sources of energy, through establishing the spatial ‘rules’ for its regulation, consenting of specific projects and acting as the key arena for mediating a range of social concerns over the resulting socio-technical shift. Despite having this key facilitative role, planning is also regularly seen as a key impediment to renewables, particularly on-shore wind (Ellis et al 2009). There is however, little known about what makes the ‘best’ approach to planning for renewables and indeed little discussion on how to judge the effectiveness of a planning regime for this issue – is it one that maximises generating capacity, protects or landscapes or biodiversity, or perhaps one that maximises social acceptance of renewable developments?
The UK offers a useful context for exploring these issues, with its four main territories (England, Northern Ireland, Scotland and Wales) having broadly similar institutional arrangements, but autonomy over spatial planning during the period in which renewables expanded across the landscape. Each of these jurisdictions has sought to use their planning system to encourage renewables with subtlety different discourses, regulations and spatial strategies. Such an ‘experiment’ offers some important insight into what ‘works’.
This paper will draw on a two year study funded by the UK’s Economic and Social Research Council (RES-062-23-2526), which has charted the effects of devolved administrations on policy and delivery of renewable energy from 1990 to 2012. Drawing on more than 80 interviews, documentary analysis and secondary data sources it describes the growth of renewable capacity in each jurisdiction, explores the spatial strategies adopted and analyses the way in which the broader institutional frameworks in which planning for renewables has emerged. The paper uses this analysis to consider the lessons that can be drawn from the comparable experience of the devolved administrations in the UK and points to the ways in which we should evaluate the effectiveness of planning regimes for renewable energy.
Resumo:
Geraint Ellis and Richard Cowell explain the findings of the ‘Delivering renewable energy under devolution’ project, including some reasons for Scotland’s lead.
The UK has seen massive increases in renewable energy since 1998, with installed capacity growing from 2,600 MW to 12,300 MW in 2011. This has coincided with devolution and it is within Northern Ireland, Scotland and Wales that the greatest increases have been seen.
As devolved administrations now host half of the UK’s renewable energy capacity, their policies are critical to achieving the broader UK targets. This also provides a fascinating insight into what sort of approach works best, and why. This has been the focus of a two-year study, funded by the Economic and Social Research Council, involving universities from across the UK, which indicates that Scotland is leading the way on renewable energy.
All devolved governments have offered significant support to renewable energy but have different degrees of powers in relation to energy. Scotland’s success seems to be based on the centrality of energy issues to current political aspirations, particularly the SNP, but also has cross-party support. The research suggests that the consensus on the importance of renewable energy amongst élite interests in Scotland helps to explain why Scottish governments have been empowered and enabled to make robust use of the powers available.
As it has achieved successful growth in the sector, this too helps cultivate credibility among key business interests and gives increased leverage to its position in policy discussions with the UK Government. Scotland has been more consistent over time in presenting the expansion of renewable energy as a national economic agenda, rather than just an environmental or rural development agenda. The availability of larger, windy, but relatively less contested sites for onshore wind in Scotland has meant that more projects went through central consenting procedures rather than local planning authorities. Its enhanced support for wave and tidal power technologies is also notable. These political conditions have been harder to find in the rest of the UK, making progress a little more uncertain.
Northern Ireland has used its powers (which are more extensive than Scotland’s) to facilitate small-scale renewables and bio-fuel processes, with its liberalised planning regime offering an initial boost to expanding capacity.
This has contrasted with the position in Wales, which has least control over energy but the Welsh Government has adopted a more innovative approach to strategic spatial zoning; this appears to have pulled in a larger volume of onshore wind development interest than could be expected in a comparable region of England. A downside of the Welsh approach appears to be the fact that the concentration of these wind projects in these zones has triggered public opposition and political conflict.
It therefore appears that the powers available to the devolved governments do not seem to determine which country has been able to make greatest headway, with broader political commitments being more significant. Despite this, the research does not conclude that the actions and activities undertaken by the devolved governments are necessarily the most important factors in shaping the development of renewable energy in the UK. This is because devolution is still a relatively new dimension of energy governance in the UK and decisions affecting key drivers for renewable energy investment are still made mainly in Westminster, with the Treasury exercising close budgetary control. In all areas of the UK, grid capacity expansion remains slow to achieve. The major growth in offshore wind to date has been driven mainly by Westminster and cross-UK bodies with the most significant capacity growth being in English territorial waters.
Resumo:
The doubly-fed induction generator (DFIG) now represents the dominant technology in wind turbine design. One consequence of this is limited damping and inertial response during transient grid disturbances. A dasiadecoupledpsila strategy is therefore proposed to operate the DFIG grid-side converter (GSC) as a static synchronous compensator (STATCOM) during a fault, supporting the local voltage, while the DFIG operates as a fixed-speed induction generator (FSIG) providing an inertial response. The modeling aspects of the decoupled control strategy, the selection of protection control settings, the significance of the fault location and operation at sub- and super-synchronous speeds are analyzed in detail. In addition, a case study is developed to validate the proposed strategy under different wind penetrations levels. The simulations show that suitable configuration of the decoupled strategy can be deployed to improve system voltage stability and inertial response for a range of scenarios, especially at high wind penetration. The conclusions are placed in context of the practical limitations of the technology employed and the system conditions.
Resumo:
Hybrid vehicles can use energy storage systems to disconnect the engine from the driving wheels of the vehicle. This enables the engine to be run closer to its optimum operating condition, but fuel energy is still wasted through the exhaust system as heat. The use of a turbogenerator on the exhaust line addresses this problem by capturing some of the otherwise wasted heat and converting it into useful electrical energy.
This paper outlines the work undertaken to model the engine of a diesel-electric hybrid bus, coupled with a hybrid powertrain model which analysed the performance of a hybrid vehicle over a drive-cycle. The distribution of the turbogenerator power was analysed along with the effect on the fuel consumption of the bus. This showed that including the turbogenerator produced a 2.4% reduction in fuel consumption over a typical drive-cycle.
The hybrid bus generator was then optimised to improve the performance of the combined vehicle/engine package and the turbogenerator was then shown to offer a 3.0% reduction in fuel consumption. The financial benefits of using the turbogenerator were also considered in terms of fuel savings for operators. For an average bus, a turbogenerator could reduce fuel costs by around £1200 per year.
Resumo:
Hydro-entanglement is a versatile process for bonding non-woven fabrics by the use of fine, closely-spaced, high-velocity jets of water to rearrange and entangle arrays of fibres. The cost of the process mainly depends on the amount of energy consumed. Therefore, the economy of the process is highly affected by optimisation of the energy required. In this paper a parameter called critical pressure is introduced which is indicative of the energy level requirement. The results of extensive experimental work are reported and analysed to give a clear understanding of the effect of the web and fibre properties on the critical pressure in the hydro-entanglement process. Furthermore, different energy-transfer distribution schemes are tested on various fabrics. The optimum scheme which involves the lowest energy consumption and the best fabric properties is identified. © 2001 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The Bi-directional Evolutionary Structural Optimisation (BESO) method is a numerical topology optimisation method developed for use in finite element analysis. This paper presents a particular application of the BESO method to optimise the energy absorbing capability of metallic structures. The optimisation objective is to evolve a structural geometry of minimum mass while ensuring that the kinetic energy of an impacting projectile is reduced to a level which prevents perforation. Individual elements in a finite element mesh are deleted when a prescribed damage criterion is exceeded. An energy absorbing structure subjected to projectile impact will fail once the level of damage results in a critical perforation size. It is therefore necessary to constrain an optimisation algorithm from producing such candidate solutions. An algorithm to detect perforation was implemented within a BESO framework which incorporated a ductile material damage model.
Resumo:
Dynamic Voltage and Frequency Scaling (DVFS) exhibits fundamental limitations as a method to reduce energy consumption in computing systems. In the HPC domain, where performance is of highest priority and codes are heavily optimized to minimize idle time, DVFS has limited opportunity to achieve substantial energy savings. This paper explores if operating processors Near the transistor Threshold Volt- age (NTV) is a better alternative to DVFS for break- ing the power wall in HPC. NTV presents challenges, since it compromises both performance and reliability to reduce power consumption. We present a first of its kind study of a significance-driven execution paradigm that selectively uses NTV and algorithmic error tolerance to reduce energy consumption in performance- constrained HPC environments. Using an iterative algorithm as a use case, we present an adaptive execution scheme that switches between near-threshold execution on many cores and above-threshold execution on one core, as the computational significance of iterations in the algorithm evolves over time. Using this scheme on state-of-the-art hardware, we demonstrate energy savings ranging between 35% to 67%, while compromising neither correctness nor performance.