810 resultados para Energy management


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Program development a cooperative effort by the Dept. of Central Management Services, the Dept. of Energy and Natural Resources, and the Governor's Office.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Contract: EA76; EA68."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"DOE/RW-0005"

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cover title : Environmental impact statement energy transportation system, inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resting energy expenditure (REE) is lower than predicted in persons taking atypical antipsychotic medication, and weight management is a significant clinical challenge for some of them. However, to date there have been no published guidelines to assist clinicians in choosing appropriate prediction equations to estimate energy expenditure in persons taking atypical antipsychotic medications. The objectives of this study were to measure REE in a group of men taking the atypical antipsychotic clozapine and to determine whether REE can be accurately predicted for this population using previously published regression equations. REE was measured using indirect calorimetry via a ventilated hood on eight men who had completed at least 6 months of treatment with clozapine. Comparisons between measured REE and predicted REE using five different equations were undertaken. The commonly-used Harris-Benedict and Schofield equations systematically overestimated REE. Predictions of REE from other equations were too variable for clinical use. When estimating energy requirements as part of a weight-management program in men who have been taking clozapine for 6 months, predictions of REE from the equations of Harris-Benedict and Schofield should be reduced by 280 kcal/day.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regulation of food intake and body weight involves a complex balance between long-term control of fat mass involving insulin, adrenal steroids and leptin signals to the CNS and short-term, meal-related signals. Cats will normally limit their food intake to their energy requirements. However, in some instances cats appear unable to regulate energy balance. Our research has demonstrated that despite elevated circulating leptin levels in obese cats associated with increased fat mass, they continue to overeat and gain weight. This paradox of increased leptin concentrations in obesity has been observed in other species and is hypothesized to be a consequence of 'leptin resistance'.