989 resultados para Energy landscape
Resumo:
Species of Old World fruit-bats (family Pteropodidae) have been identified as the natural hosts of a number of novel and highly pathogenic viruses threatening livestock and human health. We used GPS data loggers to record the nocturnal foraging movements of Acerodon jubatus, the Golden-crowned flying fox in the Philippines to better understand the landscape utilisation of this iconic species, with the dual objectives of pre-empting disease emergence and supporting conservation management. Data loggers were deployed on eight of 54 A. jubatus (two males and six females) captured near Subic Bay on the Philippine island of Luzon between 22 November and 2 December 2010. Bodyweight ranged from 730 g to 1002 g, translating to a weight burden of 3–4% of bodyweight. Six of the eight loggers yielded useful data over 2–10 days, showing variability in the nature and range of individual bat movements. The majority of foraging locations were in closed forest and most were remote from evident human activity. Forty-six discrete foraging locations and five previously unrecorded roost locations were identified. Our findings indicate that foraging is not a random event, with the majority of bats exhibiting repetitious foraging movements night-to-night, that apparently intact forest provides the primary foraging resource, and that known roost locations substantially underestimate the true number (and location) of roosts. Our initial findings support policy and decision-making across perspectives including landscape management, species conservation, and potentially disease emergence.
Resumo:
Background Several approaches have been used to express energy expenditure in youth, but no consensus exists as to which best normalizes data for the wide range of ages and body sizes across a range of physical activities. This study examined several common metrics for expressing energy expenditure to determine whether one metric can be used for all healthy children. Such a metric could improve our ability to further advance the Compendium of Physical Activities for Youth. Methods A secondary analysis of oxygen uptake (VO2) data obtained from five sites was completed, that included 947 children ages 5 to 18 years, who engaged in 14 different activities. Resting metabolic rate (RMR) was computed based on Schofield Equations [Hum Nutr Clin Nut. 39(Suppl 1), 1985]. Absolute oxygen uptake (ml.min-1), oxygen uptake per kilogram body mass (VO2 in ml.kg-1.min-1), net oxygen uptake (VO2 – resting metabolic rate), allometric scaled oxygen uptake (VO2 in ml.kg-0.75.min-1) and YOUTH-MET (VO2.[resting VO2] -1) were calculated. These metrics were regressed with age, sex, height, and body mass. Results Net and allometric-scaled VO2, and YOUTH-MET were least associated with age, sex and physical characteristics. For moderate-to-vigorous intensity activities, allometric scaling was least related to age and sex. For sedentary and low-intensity activities, YOUTH-MET was least related to age and sex. Conclusions No energy expenditure metric completely eliminated the influence of age, physical characteristics, and sex. The Adult MET consistently overestimated EE. YOUTH-MET was better for expressing energy expenditure for sedentary and light activities, whereas allometric scaling was better for moderate and vigorous intensity activities. From a practical perspective, The YOUTH-MET may be the more feasible metric for improving of the Compendium of Physical Activities for Youth.
Resumo:
Organizational researchers and practitioners are increasingly interested in self-regulatory strategies employees can use at work to sustain or improve their occupational well-being. A recent cross-sectional study on energy management strategies suggested that many work-related strategies (e.g., setting a new goal) are positively related to occupational well-being, whereas many micro-breaks (e.g., listening to music) are negatively related to occupational well-being. We used a diary study design to take a closer look at the effects of these energy management strategies on fatigue and vitality. Based on conservation of resources theory, we hypothesized that both types of energy management strategies negatively predict fatigue and positively predict vitality. Employees (N = 124) responded to a baseline survey and to hourly surveys across one work day (6.7 times on average). Consistent with previous research, between-person differences in the use of work-related strategies were positively associated with between-person differences in vitality. However, results of multilevel analyses of the hourly diary data showed that only micro-breaks negatively predicted fatigue and positively predicted vitality. These findings suggest that taking micro-breaks during the work day may have short-term effects on occupational well-being, whereas using work-related strategies may have long-term effects.
Resumo:
This thesis contributes a substantial new theoretical understanding of what 'landscape meanings' are, and what constitutes the specific meanings of particular landscapes to individuals. Further, it proposes how landscape architects may identify these meanings to inform critical and ethical research, theory, professional practice and education. What emerges from this representative case study of the landscape of Richard Haag's Gas Works Park in Seattle is the understanding that a person's expressions of their 'cognitive landscape images' of a particular landscape, coupled with their expressions of their 'interactions' with that landscape, constitute the specific 'meaning-narrative' they attach to it.
Resumo:
Inadvertent climate modification has led to an increase in urban temperatures compared to the surrounding rural area. The main reason for the temperature rise is the altered energy portioning of input net radiation to heat storage and sensible and latent heat fluxes in addition to the anthropogenic heat flux. The heat storage flux and anthropogenic heat flux have not yet been determined for Helsinki and they are not directly measurable. To the contrary, turbulent fluxes of sensible and latent heat in addition to net radiation can be measured, and the anthropogenic heat flux together with the heat storage flux can be solved as a residual. As a result, all inaccuracies in the determination of the energy balance components propagate to the residual term and special attention must be paid to the accurate determination of the components. One cause of error in the turbulent fluxes is the fluctuation attenuation at high frequencies which can be accounted for by high frequency spectral corrections. The aim of this study is twofold: to assess the relevance of high frequency corrections to water vapor fluxes and to assess the temporal variation of the energy fluxes. Turbulent fluxes of sensible and latent heat have been measured at SMEAR III station, Helsinki, since December 2005 using the eddy covariance technique. In addition, net radiation measurements have been ongoing since July 2007. The used calculation methods in this study consist of widely accepted eddy covariance data post processing methods in addition to Fourier and wavelet analysis. The high frequency spectral correction using the traditional transfer function method is highly dependent on relative humidity and has an 11% effect on the latent heat flux. This method is based on an assumption of spectral similarity which is shown not to be valid. A new correction method using wavelet analysis is thus initialized and it seems to account for the high frequency variation deficit. Anyhow, the resulting wavelet correction remains minimal in contrast to the traditional transfer function correction. The energy fluxes exhibit a behavior characteristic for urban environments: the energy input is channeled to sensible heat as latent heat flux is restricted by water availability. The monthly mean residual of the energy balance ranges from 30 Wm-2 in summer to -35 Wm-2 in winter meaning a heat storage to the ground during summer. Furthermore, the anthropogenic heat flux is approximated to be 50 Wm-2 during winter when residential heating is important.
Resumo:
1. a-p-Chlorophenoxyisobutyric acid, the ethyl ester of which is widely used as an antihypercholesterolaemic drug, is an inhibitor of energy-transfer reactions in isolated rat liver mitochondria. 2. The compound at lower concentrations (<4.0mmol/mg of mitochondrial protein) inhibits state 3 oxidation, stimulates state 4 oxidation, abolishes respiratory control and stimulates the latent adenosine triphosphatase activity of mitochondria. The inhibition imposed on state 3 oxidation is relieved by dinitrophenol. 3. At higher concentrations it inhibits coupled phosphorylation as well as dinitrophenol-stimulated adenosine triphosphatase activity. The inhibition of state 3 oxidation under these conditions is not reversed by uncouplers. 4. The three coupling sites of phosphorylation exhibit differential susceptibility to inactivation by this compound. Coupled phosphorylation at the first site is abolished at a drug concentration of 3.0mmol/mg of protein. The third site is inactivated when the concentration of the drug reaches 5.0mmol/mg of protein. The second site is the most refractory and drug concentrations of the order of 10.0mmol/mg of protein are required effectively to inhibit phosphorylation at this site. 5. The compound also inhibits ATP-dependent reversal of electron transport as well as the adenosine triphosphatase activity in submitochondrial particles. 6. The oxidation of NADH and succinate in these particles is not inhibited. 7. These properties indicate that the compound acts as an `inhibitory uncoupler' of energy-transfer reactions in isolated mitochondria.
Resumo:
Digital image
Resumo:
Digital image
Resumo:
Aims We combine measurements of weak gravitational lensing from the CFHTLS-Wide survey, supernovae Ia from CFHT SNLS and CMB anisotropies from WMAP5 to obtain joint constraints on cosmological parameters, in particular, the dark-energy equation-of-state parameter w. We assess the influence of systematics in the data on the results and look for possible correlations with cosmological parameters. Methods We implemented an MCMC algorithm to sample the parameter space of a flat CDM model with a dark-energy component of constant w. Systematics in the data are parametrised and included in the analysis. We determine the influence of photometric calibration of SNIa data on cosmological results by calculating the response of the distance modulus to photometric zero-point variations. The weak lensing data set is tested for anomalous field-to-field variations and a systematic shape measurement bias for high-redshift galaxies. Results Ignoring photometric uncertainties for SNLS biases cosmological parameters by at most 20% of the statistical errors, using supernovae alone; the parameter uncertainties are underestimated by 10%. The weak-lensing field-to-field variance between 1 deg2-MegaCam pointings is 5-15% higher than predicted from N-body simulations. We find no bias in the lensing signal at high redshift, within the framework of a simple model, and marginalising over cosmological parameters. Assuming a systematic underestimation of the lensing signal, the normalisation increases by up to 8%. Combining all three probes we obtain -0.10 < 1 + w < 0.06 at 68% confidence ( -0.18 < 1 + w < 0.12 at 95%), including systematic errors. Our results are therefore consistent with the cosmological constant . Systematics in the data increase the error bars by up to 35%; the best-fit values change by less than 0.15.
Resumo:
An attempt has been made experimentally to investigate the acoustic emission (AE) energy release in high-strength concrete (HSC) beams subjected to monotonically increasing load. Acoustic emission energy release during the fracture process of the HSC beams is measured. Stress waves released during the fracture process in materials cause acoustic emissions. AE energy released during the fracture of a notched three-point bend plain concrete beam specimens having 28-day compressive strengths of 50.0 MPa, 69.0 MPa and 78.0 MPa and mortar (cement: sand (1: 4) by weight) specimens are studied. Mortar consists of one part cement and four parts sand by weight. The specimens were tested by a material testing system of 1200 kN capacity employing crack mouth opening displacement control at the rate of 0.0004 mm/s. The fracture energy and the AE energy released during the fracture process of all the tested TPB and mortar specimens are compared and discussed. The observations made in the present experimental study have some applications for monitoring the integrity of structures.
Resumo:
In this paper we apply to the photoproduction total cross section a model we have proposed for purely hadronic processes and which is based on QCD mini-jets and soft gluon re-summation. We compare the predictions of our model with the HERA data as well as with other models. For cosmic rays, our model predicts substantially higher cross sections at TeV energies than models based on factorization, but lower than models based on mini-jets alone, without soft gluons. We discuss the origin of this difference.
Resumo:
The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage – the key to the portable electronics of the future.
Resumo:
A thermodynamic analysis is presented for the two stage thermal compression process for an adsorption refrigeration cycle with HFC-134a as the working fluid and activated carbon as the adsorbent. Three specimens of varying achievable packing densities were evaluated. The influence of evaporating, condensing/adsorption and desorption temperatures was assessed through three performance indicators, namely,the uptake efficiency, the coefficient of performance and the exergetic efficiency. Conditions under which a two stage thermal compression process performs better than the single stage unit are identified. It is concluded that two stage thermal compression will be a viable proposition when the heat source temperature is low or when adsorption characteristics are weak or when adequate packing densities are difficult to realize. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Purpose Energy is a resource of strategic importance for high density cities. International trade reshapes the urban economy and industrial structure of a city, which will indirectly affect energy use. As an international trade hub, Hong Kong relies on the import and export of services. Energy performance in the international trading of these services needs to be properly understood and assessed for Hong Kong’s urban renewal efforts. Design/methodology/approach This study evaluates Hong Kong’s embodied energy in service trades based on an input-output analysis. The three criteria used for assessment include trading areas, industry sector, and trade balance. Findings Analyzed by region, results show that Mainland China and the USA are the two largest sources of embodied energy in imports of services, while Mainland China and Japan are the two largest destinations of exports. In terms of net embodied energy transfer, Hong Kong mainly receives net energy import from Mainland China and the USA and supplies net energy export to Japan, the UK and Taiwan. Among industry sectors, Manufacturing services, Transport and Travel contribute most significantly to the embodied energy in Hong Kong’s imported services, while Transport and Travel contribute most to the energy embodied in exported services. Originality/value This study identifies the characteristics of energy consumption of service trading and establishes a feasible approach to analyze energy performance of service trade in energy-deficient Hong Kong for the first time. It provides necessary understanding and foundation for developing energy strategies in a service-based, high density urban economy.