831 resultados para Elasto-plastic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The use of amorphous-silicon electronic portal imaging devices (a-Si EPIDs) for dosimetry is complicated by the effects of scattered radiation. In photon radiotherapy, primary signal at the detector can be accompanied by photons scattered from linear accelerator components, detector materials, intervening air, treatment room surfaces (floor, walls, etc) and from the patient/phantom being irradiated. Consequently, EPID measurements which presume to take scatter into account are highly sensitive to the identification of these contributions. One example of this susceptibility is the process of calibrating an EPID for use as a gauge of (radiological) thickness, where specific allowance must be made for the effect of phantom-scatter on the intensity of radiation measured through different thicknesses of phantom. This is usually done via a theoretical calculation which assumes that phantom scatter is linearly related to thickness and field-size. We have, however, undertaken a more detailed study of the scattering effects of fields of different dimensions when applied to phantoms of various thicknesses in order to derive scattered-primary ratios (SPRs) directly from simulation results. This allows us to make a more-accurate calibration of the EPID, and to qualify the appositeness of the theoretical SPR calculations. Methods: This study uses a full MC model of the entire linac-phantom-detector system simulated using EGSnrc/BEAMnrc codes. The Elekta linac and EPID are modelled according to specifications from the manufacturer and the intervening phantoms are modelled as rectilinear blocks of water or plastic, with their densities set to a range of physically realistic and unrealistic values. Transmissions through these various phantoms are calculated using the dose detected in the model EPID and used in an evaluation of the field-size-dependence of SPR, in different media, applying a method suggested for experimental systems by Swindell and Evans [1]. These results are compared firstly with SPRs calculated using the theoretical, linear relationship between SPR and irradiated volume, and secondly with SPRs evaluated from our own experimental data. An alternate evaluation of the SPR in each simulated system is also made by modifying the BEAMnrc user code READPHSP, to identify and count those particles in a given plane of the system that have undergone a scattering event. In addition to these simulations, which are designed to closely replicate the experimental setup, we also used MC models to examine the effects of varying the setup in experimentally challenging ways (changing the size of the air gap between the phantom and the EPID, changing the longitudinal position of the EPID itself). Experimental measurements used in this study were made using an Elekta Precise linear accelerator, operating at 6MV, with an Elekta iView GT a-Si EPID. Results and Discussion: 1. Comparison with theory: With the Elekta iView EPID fixed at 160 cm from the photon source, the phantoms, when positioned isocentrically, are located 41 to 55 cm from the surface of the panel. At this geometry, a close but imperfect agreement (differing by up to 5%) can be identified between the results of the simulations and the theoretical calculations. However, this agreement can be totally disrupted by shifting the phantom out of the isocentric position. Evidently, the allowance made for source-phantom-detector geometry by the theoretical expression for SPR is inadequate to describe the effect that phantom proximity can have on measurements made using an (infamously low-energy sensitive) a-Si EPID. 2. Comparison with experiment: For various square field sizes and across the range of phantom thicknesses, there is good agreement between simulation data and experimental measurements of the transmissions and the derived values of the primary intensities. However, the values of SPR obtained through these simulations and measurements seem to be much more sensitive to slight differences between the simulated and real systems, leading to difficulties in producing a simulated system which adequately replicates the experimental data. (For instance, small changes to simulated phantom density make large differences to resulting SPR.) 3. Comparison with direct calculation: By developing a method for directly counting the number scattered particles reaching the detector after passing through the various isocentric phantom thicknesses, we show that the experimental method discussed above is providing a good measure of the actual degree of scattering produced by the phantom. This calculation also permits the analysis of the scattering sources/sinks within the linac and EPID, as well as the phantom and intervening air. Conclusions: This work challenges the assumption that scatter to and within an EPID can be accounted for using a simple, linear model. Simulations discussed here are intended to contribute to a fuller understanding of the contribution of scattered radiation to the EPID images that are used in dosimetry calculations. Acknowledgements: This work is funded by the NHMRC, through a project grant, and supported by the Queensland University of Technology (QUT) and the Royal Brisbane and Women's Hospital, Brisbane, Australia. The authors are also grateful to Elekta for the provision of manufacturing specifications which permitted the detailed simulation of their linear accelerators and amorphous-silicon electronic portal imaging devices. Computational resources and services used in this work were provided by the HPC and Research Support Group, QUT, Brisbane, Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The silk protein fibroin provides a potential substrate for use in ocular tissue reconstruction. We have previously demonstrated that transparent membranes produced from fibroin support cultivation of human limbal epithelial cells (Tissue Eng A. 14(2008)1203-11). We presently extend this body of work to studies of human limbal stromal cell (HLS) growth on fibroin in the presence and absence of serum. Methods: Primary cultures of HLS cells were established in DMEM/F12 medium supplemented with either 10% fetal bovine serum (FBS) or 2% B27 supplement. Defined keratinocyte serum-free medium (DK-SFM, Invitrogen) was also tested. The resulting cultures were analysed by flow cytometry for expression of CD34, CD90, CD45, and CD141. Cultures grown under each condition were subsequently passaged either onto transparent fibroin membranes prepared from purified fibroin or within 3D scaffolds prepared from partially-solubilised fibroin. Results: HLS cultures were successfully established under each condition, but grew more slowly and passaged poorly in the absence of serum. Cultures grown in 10% FBS were <0.5% CD34+ (keratocytes) and >97% CD90+ (fibroblasts). Cultures established in 2% B27 formed floating spheres and contained >8% CD34+ cells and reduced CD90 expression. Cultures established in DK-SFM displayed traces of epithelial cell growth (CD141), but mostly consisted of CD90+ cells with <1% CD34+ cells. Cells of bone marrow lineage (CD45) were rarely observed under any conditions. Cultures grown in 10% FBS were able to adhere to and proliferate on silk fibroin 3-D scaffolds and transparent films while those grown serum-free could not. Adhesion of HLS cells to fibroin was initially poorer than that displayed on tissue culture plastic. Conclusions: HLS cultures containing cells of predominantly fibroblast lineage can be grown on fibroin-based materials, but this process is dependent upon additional ECM factors such as those provided by serum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis provides an experimental and computational platform for investigating the performance and behaviour of water filled, plastic portable road safety barriers in an isolated impact scenario. A schedule of experimental impact tests were conducted assessing the impact response of an existing design of road safety barrier utilising a novel horizontal impact testing system. A coupled finite element and smooth particle hydrodynamic model of the barrier system was developed and validated against the results of the experimental tests. The validated model was subsequently used to assess the effect of certain composite materials on the impact performance of the water filled, portable road safety barrier system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a study of the theoretical and experimental behaviour of box-columns of varying b/t ratios under loadings of axial compression and torsion and their combinations. Details of the testing rigs and the testing methods, the results obtained such as the load-deflection curves and the interaction diagrams, and experimental observations regarding the behaviour of box-models and the types of local plastic mechanisms associated with each type of loading are presented. A simplified rigid-plastic analysis is carried out to study the collapse behaviour of box-columns under these loadings, based on the observed plastic mechanisms, and the results are compared with those of experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Materials used in the engineering always contain imperfections or defects which significantly affect their performances. Based on the large-scale molecular dynamics simulation and the Euler–Bernoulli beam theory, the influence from different pre-existing surface defects on the bending properties of Ag nanowires (NWs) is studied in this paper. It is found that the nonlinear-elastic deformation, as well as the flexural rigidity of the NW is insensitive to different surface defects for the studied defects in this paper. On the contrary, an evident decrease of the yield strength is observed due to the existence of defects. In-depth inspection of the deformation process reveals that, at the onset of plastic deformation, dislocation embryos initiate from the locations of surface defects, and the plastic deformation is dominated by the nucleation and propagation of partial dislocations under the considered temperature. Particularly, the generation of stair-rod partial dislocations and Lomer–Cottrell lock are normally observed for both perfect and defected NWs. The generation of these structures has thwarted attempts of the NW to an early yielding, which leads to the phenomenon that more defects does not necessarily mean a lower critical force.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The invasive liana cat’s claw creeper Dolichandra unguis-cati (L.) L.G. Lohmann (syn. Macfadyena unguis-cati (L.) A.H. Gentry) exhibits intraspecific variation in leaf morphology, but this is rarely noted in the published literature. The present study documents variation in leaf morphology in two forms of the species that occur in Australia (long pod and short pod). Leaf morphology is compared between the two forms and the position of the shoots (trunk and ground) at the only two sites in which they co-occur. Leaves were categorised on the basis of leaflet number and the presence or absence of tendrils. Simple leaves were produced mainly on shoots growing along the ground and were more abundant in the short-pod form. Long-pod plants were dominated by bifoliate leaves with tendrils. Cat’s claw creeper exhibits considerably wider variation in leaf morphology than recorded previously. Variations in leaf morphology may be linked to differences in the genotype, developmental stage and plastic responses of the plants. Understanding these variations may have implications for taxonomic delimitation and improved management, particularly biological control involving leaf-feeding insects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scaffolding is an essential issue in tissue engineering and scaffolds should answer certain essential criteria: biocompatibility, high porosity, and important pore interconnectivity to facilitate cell migration and fluid diffusion. In this work, a modified solvent castingparticulate leaching out method is presented to produce scaffolds with spherical and interconnected pores. Sugar particles (200–300 lm and 300–500 lm) were poured through a horizontal Meker burner flame and collected below the flame. While crossing the high temperature zone, the particles melted and adopted a spherical shape. Spherical particles were compressed in plastic mold. Then, poly-L-lactic acid solution was cast in the sugar assembly. After solvent evaporation, the sugar was removed by immersing the structure into distilled water for 3 days. The obtained scaffolds presented highly spherical interconnected pores, with interconnection pathways from 10 to 100 lm. Pore interconnection was obtained without any additional step. Compression tests were carried out to evaluate the scaffold mechanical performances. Moreover, rabbit bone marrow mesenchymal stem cells were found to adhere and to proliferate in vitro in the scaffold over 21 days. This technique produced scaffold with highly spherical and interconnected pores without the use of additional organic solvents to leach out the porogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Portable water-filled barriers (PWFB) are roadside structures used to separate moving traffic from work-zones. Numerical PWFB modelling is preferred in the design stages prior to actual testing. This paper aims to study the fluid-structure interaction of PWFB under vehicular impact using several methods. The strategy to treat water as non-structural mass was proposed and the errors were investigated. It was found that water can be treated with the FEA-NSM model for velocities higher than 80kmh-1. However, full SPH/FEA model is still the best treatment for water and necessary for lower impact velocities. The findings in this paper can be used as guidelines for modelling and designing PWFB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, researchers reported that nanowires (NWs) are often polycrystalline, which contain grain or twin boundaries that transect the whole NW normal to its axial direction into a bamboo like structure. In this work, large-scale molecular dynamics simulation is employed to investigate the torsional behaviours of bamboo-like structured Cu NWs. The existence of grain boundaries is found to induce a considerably large reduction to the critical angle, and the more of grain boundaries the less reduction appears, whereas, the presence of twin boundaries only results in a relatively smaller reduction to the critical angle. The introduction of grain boundaries reduces the torsional rigidity of the NW, whereas, the twin boundaries exert insignificant influence to the torsional rigidity. NWs with grain boundaries are inclined to produce a local HCP structure during loading, and the plastic deformation is usually evenly distributed along the axial axis of the NW. The plastic deformation of both perfect NW and NWs with twin boundaries is dominated by the nucleation and propagation of parallel intrinsic stacking faults. This study will enrich the current understanding of the mechanical properties of NWs, which will eventually shed lights on their applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The load-deflection and ultimate strength behaviour of longitudinally stiffened plates with openings was studied using a second-order elastic post-buckling analysis and a rigid-plastic analysis. The ultimate strength was predicted from the intersection point of elastic and rigid-plastic curves and the Perry strut formula. Comparison with experimental results shows that satisfactory prediction of ultimate strength can be obtained by this simple method. Effects of the size of opening, the initial geometrical imperfections and the plate slenderness ratio on the strength of perforated stiffened plates were also studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Application of 'advanced analysis' methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A research project has been conducted with the aim of developing concentrated plasticity methods suitable for practical advanced analysis of steel frame structures comprising non-compact sections. A primary objective was to produce a comprehensive range of new distributed plasticity analytical benchmark solutions for verification of the concentrated plasticity methods. A distributed plasticity model was developed using shell finite elements to explicitly account for the effects of gradual yielding and spread of plasticity, initial geometric imperfections, residual stresses and local buckling deformations. The model was verified by comparison with large-scale steel frame test results and a variety of existing analytical benchmark solutions. This paper presents a description of the distributed plasticity model and details of the verification study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insulated Rail Joints (IRJs) are designed to electrically isolate two rails in rail tracks to control the signalling system for safer train operations. Unfortunately the gapped section of the IRJs is structurally weak and often fails prematurely especially in heavy haul tracks, which adversely affects service reliability and efficiency. The IRJs suffer from a number of failure modes; the railhead ratchetting at the gap is, however, regarded as the root cause and attended to in this thesis. Ratchetting increases with the increase in wheel loads; in the absence of a life prediction model, effective management of the IRJs for increased wagon wheel loads has become very challenging. Therefore, the main aim of this thesis is to determine method to predict IRJs' service life. The distinct discontinuity of the railhead at the gap makes the Hertzian theory and the rolling contact shakedown map, commonly used in the continuously welded rails, not applicable to examine the metal ratchetting of the IRJs. Finite Element (FE) technique is, therefore, used to explore the railhead metal ratchetting characteristics in this thesis, the boundary conditions of which has been determined from a full scale study of the IRJ specimens under rolling contact of the loaded wheels. A special purpose test set up containing full-scale wagon wheel was used to apply rolling wheel loads on the railhead edges of the test specimens. The state of the rail end face strains was determined using a non-contact digital imaging technique and used for calibrating the FE model. The basic material parameters for this FE model were obtained through independent uniaxial, monotonic tensile tests on specimens cut from the head hardened virgin rails. The monotonic tensile test data have been used to establish a cyclic load simulation model of the railhead steel specimen; the simulated cyclic load test has provided the necessary data for the three decomposed kinematic hardening plastic strain accumulation model of Chaboche. A performance based service life prediction algorithm for the IRJs was established using the plastic strain accumulation obtained from the Chaboche model. The predicted service lives of IRJs using this algorithm have agreed well with the published data. The finite element model has been used to carry out a sensitivity study on the effects of wheel diameter to the railhead metal plasticity. This study revealed that the depth of the plastic zone at the railhead edges is independent of the wheel diameter; however, large wheel diameter is shown to increase the IRJs' service life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms leading to colonization of metastatic breast cancer cells (BCa) in the skeleton are still not fully understood. Here, we demonstrate that mineralized extracellular matrices secreted by primary human osteoblasts (hOBM) modulate cellular processes associated with BCa colonization of bone. A panel of four BCa cell lines of different bone-metastatic potential (T47D, SUM1315, MDA-MB-231, and the bone-seeking subline MDA-MB-231BO) was cultured on hOBM. After 3 days, the metastatic BCa cells had undergone morphological changes on hOBM and were aligned along the hOBM's collagen type I fibrils that were decorated with bone-specific proteins. In contrast, nonmetastatic BCa cells showed a random orientation on hOBM. Atomic force microscopy-based single-cell force spectroscopy revealed that the metastatic cell lines adhered more strongly to hOBM compared with nonmetastatic cells. Function-blocking experiments indicated that β1-integrins mediated cell adhesion to hOBM. In addition, metastatic BCa cells migrated directionally and invaded hOBM, which was accompanied by enhanced MMP-2 and -9 secretion. Furthermore, we observed gene expression changes associated with osteomimickry in BCa cultured on hOBM. As such, osteopontin mRNA levels were significantly increased in SUM1315 and MDA-MB-231BO cells in a β1-integrin-dependent manner after growing for 3 days on hOBM compared with tissue culture plastic. In conclusion, our results show that extracellular matrices derived from human osteoblasts represent a powerful experimental platform to dissect mechanisms underlying critical steps in the development of bone metastases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A numerical procedure based on the plastic hinge concept for study of the structural behaviour of steel framed structures exposed to fire is described. Most previous research on fire analysis considered the structural performance due to rising temperature. When strain reversal occurs during the cooling phase, the stress–strain curve is different. The plastic deformation is incorporated into the stress–strain curve to model the strain reversal effect in which unloading under elastic behaviour is allowed. This unloading response is traced by the incremental–iterative Newton–Raphson method. The mechanical properties of the steel member in the present fire analysis follows both Eurocode 3 Part 1.2 and BS5950 Part 8, which implicitly allow for thermal creep deformation. This paper presents an efficient fire analysis procedure for predicting thermal and cooling effects on an isolated element and a multi-storey frame. Several numerical and experimental examples related to structural behaviour in cooling phase are studied and compared with results obtained by other researchers. The proposed method is effective in the fire safety design and analysis of a building in a real fire scenario. The scope of investigation is of great significance since a large number of rescuers would normally enter a fire site as soon as the fire is extinguished and during the cooling phase, so a structural collapse can be catastrophic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a higher-order beam-column formulation that can capture the geometrically non-linear behaviour of steel framed structures which contain a multiplicity of slender members. Despite advances in computational frame software, analyses of large frames can still be problematic from a numerical standpoint and so the intent of the paper is to fulfil a need for versatile, reliable and efficient non-linear analysis of general steel framed structures with very many members. Following a comprehensive review of numerical frame analysis techniques, a fourth-order element is derived and implemented in an updated Lagrangian formulation, and it is able to predict flexural buckling, snap-through buckling and large displacement post-buckling behaviour of typical structures whose responses have been reported by independent researchers. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. The higher-order element forms a basis for augmenting the geometrically non-linear approach with material non-linearity through the refined plastic hinge methodology described in the companion paper.