924 resultados para Ecosystem Engineers
Resumo:
Vols.1-87,1872-1940 also called no.1-258.
Resumo:
"Sponsors: The Wildlife Society's Working Group on Sustainable Use of Ecosystem Resources ... [et al.]."
Resumo:
Editors: 1st-5th ed., L.S. Marks.; 6th ed., T. Baumeister.
Resumo:
"This draft report represents five years of work by the National Water Commission studying all the nation's water problems and needs."
Resumo:
Caption title.
Resumo:
Mode of access: Internet.
Resumo:
Some proceedings issued without series title.
Resumo:
Mode of access: Internet.
Resumo:
Permafrost dynamics play an important role in high-latitude peatland carbon balance and are key to understanding the future response of soil carbon stocks. Permafrost aggradation can control the magnitude of the carbon feedback in peatlands through effects on peat properties. We compiled peatland plant macrofossil records for the northern permafrost zone (515 cores from 280 sites) and classified samples by vegetation type and environmental class (fen, bog, tundra and boreal permafrost, thawed permafrost). We examined differences in peat properties (bulk density, carbon (C), nitrogen (N) and organic matter content, C/N ratio) and C accumulation rates among vegetation types and environmental classes.
Resumo:
Remotely sensed data have been used extensively for environmental monitoring and modeling at a number of spatial scales; however, a limited range of satellite imaging systems often. constrained the scales of these analyses. A wider variety of data sets is now available, allowing image data to be selected to match the scale of environmental structure(s) or process(es) being examined. A framework is presented for use by environmental scientists and managers, enabling their spatial data collection needs to be linked to a suitable form of remotely sensed data. A six-step approach is used, combining image spatial analysis and scaling tools, within the context of hierarchy theory. The main steps involved are: (1) identification of information requirements for the monitoring or management problem; (2) development of ideal image dimensions (scene model), (3) exploratory analysis of existing remotely sensed data using scaling techniques, (4) selection and evaluation of suitable remotely sensed data based on the scene model, (5) selection of suitable spatial analytic techniques to meet information requirements, and (6) cost-benefit analysis. Results from a case study show that the framework provided an objective mechanism to identify relevant aspects of the monitoring problem and environmental characteristics for selecting remotely sensed data and analysis techniques.
Resumo:
In this work we assess the pathways for environmental improvement by the coal utilization industry for power generation in Australia. In terms of resources, our findings show that coal is a long term resource of concern as coal reserves are likely to last for the next 500 years or more. However, our analysis indicates that evaporation losses of water in power generation will approach 1000 Gl (gigalitres) per year, equivalent to a consumption of half of the Australian residential population. As Australia is the second driest continent on earth, water consumption by power generators is a resource of immediate concern with regards to sustainability. We also show that coal will continue to play a major role in energy generation in Australia and, hence, there is a need to employ new technologies that can minimize environmental impacts. The major technologies to reduce impacts to air, water and soils are addressed. Of major interest, there is a major potential for developing sequestration processes in Australia, in particular by enhanced coal bed methane (ECBM) recovery at the Bowen Basin, South Sydney Basin and Gunnedah Basin. Having said that, CO2 capture technologies require further development to support any sequestration processes in order to comply with the Kyoto Protocol. Current power generation cycles are thermodynamic limited, with 35-40% efficiencies. To move to a high efficiency cycle, it is required to change technologies of which integrated gasification combined cycle plus fuel cell is the most promising, with efficiencies expected to reach 60-65%. However, risks of moving towards an unproven technology means that power generators are likely to continue to use pulverized fuel technologies, aiming at incremental efficiency improvements (business as usual). As a big picture pathway, power generators are likely to play an increasing role in regional development; in particular EcoParks and reclaiming saline water for treatment as pressures to access fresh water supplies will significantly increase.
Resumo:
At Heron Island reef, Great Barrier Reef Australia, biomass densities and mean wet mass of Ward's damselfish Pomacentrus wardi and the jewelled blenny Salarias fasciatus were not significantly different at 2-37 v. 2-95 g m(-2) and 8-7 v. 7-9 g, respectively. Whereas S. fasciatus significantly exceeded P. wardi in (1) total number of bites per day (3427 v. 1155), (2) the mass of epilithic algal community consumed per bite (2-19 1,. 0-14mg) and (3) total organic carbon consumed per day (487-31 v. 35-46 mg C m(-2) day(-1)). Territorial behaviour differed also between the two species. Pomacentrus wardi chased from their territories a smaller proportion of blennies than roving grazers (i.e. scarids, acanthurids, siganids and pomacentrids) relative to S. fasciatus. Salarias fasciatus chased c. 90% of other blennies from their territories, while chasing only c. 20% of all damsels that entered. Both P. wardi and S. fasciatus rarely chased non-grazers. The chasing behaviour of S. fascialus was size dependent, with resident fish chasing only individuals of its own family (i.e. Blenniidae) that were the same or smaller size. Pomacentrus wardi may have tolerated S. fasciatus grazing within its territory, as it contributes to territory defence from other blennies. The possibility that the interaction between the two species is facilitative, rather than competitive, is discussed. It was concluded that salariine blennies play an important, and previously underestimated role in coral reef trophodynamics. (C) 2004 The Fisheries Society of the British Isles.
Resumo:
Quantifying water losses in paddy fields assists estimation of water availability in rainfed lowland rice ecosystem. Little information is available on water balance in different toposequence positions of sloped rainfed lowland. Therefore, the aim of this work was to quantify percolation and the lateral water flow with special reference to the toposequential variation. Data used for the analysis was collected in Laos and northeast Thailand. Percolation and water tables were measured on a daily basis using a steel cylindrical tube with a lid and perforated PVC tubes, respectively. Percolation rate was determined using linear regression analysis of cumulative percolation. Assuming that the total amount of evaporation and transpiration was equivalent to potential evapotranspiration, the lateral water flow was estimated using the water balance equation. Separate perched water and groundwater tables were observed in paddy fields on coarse-textured soils. The percolation rate varied between 0 and 3 mm/day across locations, and the maximum water loss by lateral movement was more than 20 mm/day. Our results are in agreement with the previously reported findings, and the methodology of estimating water balance components appears reasonably acceptable. With regard to the toposequential variation, the higher the position in the topoesquence, the greater potential for water loss because of higher percolation and lateral flow rates.
Resumo:
We studied the relationships among plant and arbuscular mycorrhizal (AM) fungal diversity, and their effects on ecosystem function, in a series of replicate tropical forestry plots in the La Selva Biological Station, Costa Rica. Forestry plots were 12 yr old and were either monocultures of three tree species, or polycultures of the tree species with two additional understory species. Relationships among the AM fungal spore community, host species, plant community diversity and ecosystem phosphorus-use efficiency (PUE) and net primary productivity (NPP) were assessed. Analysis of the relative abundance of AM fungal spores found that host tree species had a significant effect on the AM fungal community, as did host plant community diversity (monocultures vs polycultures). The Shannon diversity index of the AM fungal spore community differed significantly among the three host tree species, but was not significantly different between monoculture and polyculture plots. Over all the plots, significant positive relationships were found between AM fungal diversity and ecosystem NPP, and between AM fungal community evenness and PUE. Relative abundance of two of the dominant AM fungal species also showed significant correlations with NPP and PUE. We conclude that the AM fungal community composition in tropical forests is sensitive to host species, and provide evidence supporting the hypothesis that the diversity of AM fungi in tropical forests and ecosystem NPP covaries.
Resumo:
Awareness of antibiotics in wastewaters and aquatic ecosystems is growing as investigations into alternate pollutants increase and analytical techniques for detecting these chemicals improve. The presence of three antibiotics (ciproffoxacin, norfloxacin and cephalexin) was evaluated in both sewage effluent and environmental waters downstream from a sewage discharge. Bacteria cultured from the sewage bioreactor and receiving waters were tested for resistance against six antibiotics (ciprofloxacin, tetracycline, ampicillin, trimethoprim, erythromycin and trimethoprim/sulphamethoxazole) and effects of short term exposure (24h) to antibiotics on bacterial denitrification rates were examined. Antibiotics were detected entering the sewage treatment plant with varying levels of removal during the treatment process. Antibiotics were also detected in effluent entering receiving waters and detectable 500m from the source. Among the bacteria cultured from the sewage bioreactor, resistance was displayed against all six antibiotics tested and bacteria cultured from receiving waters were resistant against two of the antibiotics tested. Rates of denitrification were observed to decrease in response to some antibiotics and not to others, though this was only observed at concentrations exceeding those likely to be found in the environment. Findings from this preliminary research have indicated that antibiotics are entering our aquatic systems and pose a potential threat to ecosystem function and potentially human health. (c) 2004 Elsevier Ltd. All rights reserved.