837 resultados para East Brookfield
Resumo:
Pore-water samples from the equatorial sedimentary bulge area show reversals in depth profiles of 87Sr/86Sr ratios at the sediment/basement interface. Results of this work support inferences made from previous pore-water data (from DSDP drilling in the area) that large-scale horizontal advection of seawater has occurred through the basement underlying the thick sedimentary sequence in this region. The area of apparent advection includes the eastern part of the equatorial high-productivity zone and part of the Guatemala Basin. We attempted to find links between the observed near-basement reversals in pore-water chemistry and sedimentary thickness, age, and topography of the area. Most of the sites that show horizontal advection have disturbed basement topography or outcrops within 10 to 20 km, suggesting that the cooling effects of outcrops may extend for at least 20 km horizontally. Heat-flow data from the area were compared to determine whether sites showing near-bottom chemistry reversals were consistent with areas of low conductive heat flow. This was generally true for the area of the sedimentary bulge and Guatemala Basin. Not enough pore-water data from the Nazca Plate were available to establish any reliable systematics. Because the high-productivity area is well-sealed from hydrothermal circulation, the missing heat must be lost by horizontal advective heat transport. From profiles of strontium isotopes and other elements that show departure from seawater values with increasing depth in the sediments, but return to seawater values near the basement, it appears that water flows relatively freely through much of the oceanic crust, even when sealed by considerable sedimentary cover.
Resumo:
Lithological, geochemical, stratigraphic, and paleoecological features of carbonaceous sediments in the Late Jurassic Volgian Basin of the East European Platform (Kostroma Region) are considered. The shale-bearing sequence studied is characterized by greater sedimentological completeness as compared with its stratotype sections in the Middle Volga region (Gorodishche, Kashpir). Stratigraphic position and stratigraphy of the shale-bearing sequence, as well as distribution of biota in different sedimentation settings are specified. It is shown that Volgian sediments show distinct cyclic structure. The lower and upper elements of cyclites consist of high-carbonaceous shales and clayey-calcareous sediments, respectively, separated by transitional varieties. Bioturbation structures in different rocks are discussed. Microcomponent composition and pyrolytic parameters of organic matter, as well as distribution of chemical elements in lithologically variable sediments are analyzed. Possible reasons responsible for appearance of cyclicity and accumulation of organic-rich sediments are discussed.
Resumo:
During underwater photography and sampling of the rift valley bottom in the axial part of the East Pacific Rise, where water transparency is reduced due to hydrothermal input, ore manifestations have been found. The bottom is covered by them as by a jacket on both sides from the EPR axial zone. However, exposed pillow-lavas and clumpy blocks in rift ledges are covered by a thin metal-bearing film. It is supposed that sedimentation results mainly from hydrothermal input of dissolved chemical elements in seawater, their transformation on the geochemical barrier, and subsequent deposition as particulates. Contents of ore components in metalliferous sediments have been measured by atomic-absorption and X-ray radiometry methods. Sediment age has been determined as Middle Pleistocene - Holocene. Maximal hydrothermal activity was at the beginning of Early Holocene, about 10 Ka. A smoker has been found on the western slope of the rift valley.
Resumo:
Endolithic bioerosion is difficult to analyse and to describe, and it usually requires damaging of the sample material. Sponge erosion (Entobia) may be one of the most difficult to evaluate as it is simultaneously macroscopically inhomogeneous and microstructurally intricate. We studied the bioerosion traces of the two Australian sponges Cliona celata Grant, 1826 (sensu Schönberg 2000) and Cliona orientalis Thiele, 1900 with a newly available radiographic technology: high resolution X-ray micro-computed tomography (MCT). MCT allows non-destructive visualisation of live and dead structures in three dimensions and was compared to traditional microscopic methods. MCT and microscopy showed that C. celata bioerosion was more intense in the centre and branched out in the periphery. In contrast, C. orientalis produced a dense, even trace meshwork and caused an overall more intense erosion pattern than C. celata. Extended pioneering filaments were not usually found at the margins of the studied sponge erosion, but branches ended abruptly or tapered to points. Results obtained with MCT were similar in quality to observations from transparent optical spar under the dissecting microscope. Microstructures could not be resolved as well as with e.g. scanning electron microscopy (SEM). Even though sponge scars and sponge chips were easily recognisable on maximum magnification MCT images, they lacked the detail that is available from SEM. Other drawbacks of MCT involve high costs and presently limited access. Even though MCT cannot presently replace traditional techniques such as corrosion casts viewed by SEM, we obtained valuable information. Especially for the possibility to measure endolithic pore volumes, we regard MCT as a very promising tool that will continue to be optimised. A combination of different methods will produce the best results in the study of Entobia.
Resumo:
The Aral Sea is located in an arid region with much sand and salt deposits in the surrounding barren open land. Hence, significant displacements of sediments into the lakebed by the action of wind, water, gravity, or snow are likely. The bathymetry of the lake was last observed in the 1960s, and within the last half century, the structure of the lakebed has changed. Based on satellite observations of the temporal changes of shoreline (Landsat optical remote sensing) and water level (multi-mission satellite altimetry) over more than one decade an updated bathymetric chart for the East Basin of the Aral Sea has been generated. During this time, the geometry of the shallow East Basin experienced strong fluctuations due to the occurrence of periods of drying and strong inflow. By the year 2014 the East Basin fell dry. The dynamic behavior of the basin allowed for estimating the lake's bathymetry from a series of satellite-based information. The river mouth made its impression in the present East Aral Sea, because its shrinking led to the inflow of much sediment into the lake's interior. In addition, salt deposits along the shorelines increased the corresponding elevation, a phenomenon that is more pronounced in the reduced lakebed because of increased salinity. It must be noted that height estimates from satellite altimetry were only possible down to a minimum elevation of 27 m above sea level due to a lack of reliable altimetry data over the largely reduced water surface. In order to construct a complete bathymetric chart of the lakebed of the East Aral Sea heights below 27 m were obtained solely from Landsat optical images following the SRB (Selected Region Boundary) approach as described by Singh et al. (2015).
Resumo:
In the monograph metalliferous sediments of the East Pacific Rise near 21°S are under consideration. Distribution trends of chemical, mineral and grain size compositions of metalliferous sediments accumulated near the axis of this ultrafast spreading segment of the EPR are shown. On the basis of lithological and geochemical investigations spatial and temporal variations of hydrothermal activity are estimated. Migration rates of hydrothermal fields along the spreading axis are calculated. The model of cyclic hydrothermal process is suggested as a result of tectono-magmatic development of the spreding centre.
Resumo:
The motivation for ISSS-08 was to alleviate the scarcity of observational data on transport and processing of water, sediment and carbon on the East Siberian Arctic Shelves (ESAS). The region is of particular interest from the perspective of carbon-climate couplings as it has witnessed a 4°C springtime positive temperature anomaly for 2000-2005 compared with preceding decades. A complex sampling program was accomplished during the 50-days ISSS-08 cruise August - September 2008 by participants from 12 organizations in Russia, Sweden, UK and USA.
Resumo:
Acoustic estimates of herring and blue whiting abundance were obtained during the surveys using the Simrad ER60 scientific echosounder. The allocation of NASC-values to herring, blue whiting and other acoustic targets were based on the composition of the trawl catches and the appearance of echo recordings. To estimate the abundance, the allocated NASC -values were averaged for ICES-squares (0.5° latitude by 1° longitude). For each statistical square, the unit area density of fish (rA) in number per square nautical mile (N*nm-2) was calculated using standard equations (Foote et al., 1987; Toresen et al., 1998). To estimate the total abundance of fish, the unit area abundance for each statistical square was multiplied by the number of square nautical miles in each statistical square and then summed for all the statistical squares within defined subareas and over the total area. Biomass estimation was calculated by multiplying abundance in numbers by the average weight of the fish in each statistical square then summing all squares within defined subareas and over the total area. The Norwegian BEAM soft-ware (Totland and Godø 2001) was used to make estimates of total biomass.
Resumo:
Acoustic estimates of herring and blue whiting abundance were obtained during the surveys using the Simrad ER60 scientific echosounder. The allocation of NASC-values to herring, blue whiting and other acoustic targets were based on the composition of the trawl catches and the appearance of echo recordings. To estimate the abundance, the allocated NASC -values were averaged for ICES-squares (0.5° latitude by 1° longitude). For each statistical square, the unit area density of fish (rA) in number per square nautical mile (N*nm-2) was calculated using standard equations (Foote et al., 1987; Toresen et al., 1998). To estimate the total abundance of fish, the unit area abundance for each statistical square was multiplied by the number of square nautical miles in each statistical square and then summed for all the statistical squares within defined subareas and over the total area. Biomass estimation was calculated by multiplying abundance in numbers by the average weight of the fish in each statistical square then summing all squares within defined subareas and over the total area. The Norwegian BEAM soft-ware (Totland and Godø 2001) was used to make estimates of total biomass.