972 resultados para ERM-binding domain
Resumo:
Seven cysteine-rich repeats form the ligand-binding region of the low-density lipoprotein (LDL) receptor. Each of these repeats is assumed to bind a calcium ion, which is needed for association of the receptor with its ligands, LDL and beta-VLDL. The effects of metal ions on the folding of the reduced N-terminal cysteine-rich repeat have been examined by using reverse-phase high-performance liquid chromatography to follow the formation of fully oxidized isomers with different disulfide connectivities. in the absence of calcium many of the 15 possible isomers formed on oxidation, whereas in its presence the predominant product at equilibrium had the native disulfide bond connectivities. Other metals were far less effective at directing disulfide bond formation: Mn2+ partly mimicked the action of Ca2+, but Ba2+, Sr2+, and Mg2+ had little effect. This metal-ion specificity was also observed in two-dimensional H-1 NMR spectral studies: only Ca2+ induced the native three-dimensional fold. The two paramagnetic ions, Gd3+ and Mn2+, and Cd2+ did not promote adoption of a well-defined structure, and the two paramagnetic ions did not displace calcium ions. The location of calcium ion binding sites in the repeat was also explored by NMR spectroscopy. The absence of chemical shift changes for the side chain proton resonances of Asp26, Asp36, and Glu37 from pH 3.9 to 6.8 in the presence of calcium ions and their proximal location in the NMR structures implicated these side chains as calcium ligands. Deuterium exchange NMR experiments also revealed a network of hydrogen bonds that stabilizes the putative calcium-binding loop.
Resumo:
Background: The redox proteins that incorporate a thioredoxin fold have diverse properties and functions. The bacterial protein-folding factor DsbA is the most oxidizing of the thioredoxin family. DsbA catalyzes disulfide-bond formation during the folding of secreted proteins, The extremely oxidizing nature of DsbA has been proposed to result from either domain motion or stabilizing active-site interactions in the reduced form. In the domain motion model, hinge bending between the two domains of DsbA occurs as a result of redox-related conformational changes. Results: We have determined the crystal structures of reduced and oxidized DsbA in the same crystal form and at the same pH (5.6). The crystal structure of a lower pH form of oxidized DsbA has also been determined (pH 5.0). These new crystal structures of DsbA, and the previously determined structure of oxidized DsbA at pH 6.5, provide the foundation for analysis of structural changes that occur upon reduction of the active-site disulfide bond. Conclusions: The structures of reduced and oxidized DsbA reveal that hinge bending motions do occur between the two domains. These motions are independent of redox state, however, and therefore do not contribute to the energetic differences between the two redox states, instead, the observed domain motion is proposed to be a consequence of substrate binding. Furthermore, DsbA's highly oxidizing nature is a result of hydrogen bond, electrostatic and helix-dipole interactions that favour the thiolate over the disulfide at the active site.
Resumo:
We present a novel protein crystallization strategy, applied to the crystallization of human T cell leukemia virus type 1 (HTLV-1) transmembrane protein gp21 lacking the fusion peptide and the transmembrane domain, as a chimera with the Escherichia coli maltose binding protein (MBP). Crystals could not be obtained with a MBP/gp21 fusion protein in which fusion partners were separated by a flexible linker, but were obtained after connecting the MBP C-terminal alpha-helix to the predicted N-terminal alpha-helical sequence of gp21 via three alanine residues. The gp21 sequences conferred a trimeric structure to the soluble fusion proteins as assessed by sedimentation equilibrium and X-ray diffraction, consistent with the trimeric structures of other retroviral transmembrane proteins. The envelope protein precursor, gp62, is likewise trimeric when expressed in mammalian cells. Our results suggest that MBP may have a general application for the crystallization of proteins containing N-terminal alpha-helical sequences.
Resumo:
Phosphorylation of the tumor suppressor p53 is generally thought to modify the properties of the protein in four of its five independent domains. We used synthetic peptides to directly study the effects of phosphorylation on the non-sequence-specific DNA binding and conformation of the C-terminal, basic domain. The peptides corresponded to amino acids 361-393 and were either nonphosphorylated or phosphorylated at the protein kinase C (PKC) site, Ser378, or the casein kinase II (CKII) site, Ser392, or bis-phosphorylated on both the PKC and the CKII sites. A fluorescence polarization analysis revealed that either the recombinant p53 protein or the synthetic peptides bound to two unrelated target DNA fragments. Phosphorylation of the peptide at the PKC or the CKII sites clearly decreased DNA binding, and addition of a second phosphate group almost completely abolished binding. Circular dichroism spectroscopy showed that the peptides assumed identical unordered structures in aqueous solutions. The unmodified peptide, unlike the Ser378 phosphorylated peptide, changed conformation in the presence of DNA. The inherent ability of the peptides to form an alpha-helix could be detected when circular dichroism and nuclear magnetic resonance spectra were: taken in trifluoroethanol-water mixtures. A single or double phosphorylation destabilized the helix around the phosphorylated Ser378 residue but stabilized the helix downstream in the sequence.
Resumo:
GH-binding protein (GHBP) corresponds to the extracellular domain of the GH receptor (GHR) and has been shown to be closely related to body fat. This study aimed to examine the inter-relationship between GHBP, leptin and body fat, and to test the hypothesis that GHBP is modified by GH replacement in GH-deficient adults and predicts IGF-I response. Twenty adults, mean age 47 years (range 20-69) with proven GH deficiency were randomly allocated to either GH (up to 0.25 U/kg/week in daily doses) or placebo for 3 months before cross-over to the opposite treatment. Plasma GHBP and leptin were measured at baseline and 2, 4, 8 and 12 weeks after each treatment. Whole body composition was measured at baseline by dual-energy X-ray absorptiometry (DEXA). There was a strong correlation between baseline leptin and GHBP (r = 0.88, P < 0.0001) and between baseline GHBP and percentage body fat, (r = 0.83, P < 0.0001). Mean GHBP levels were higher on GH compared with placebo, 1.53 +/- 0.28 vs 1.41 +/- 0.25 nM, P = 0.049. There was no correlation between baseline IGF-I and GHBP (r = -0.049, P = 0.84), and GHBP did not predict IGF-I response to GH replacement. The close inter-relationship between GHBP, leptin and body fat suggests a possible role for GHBP in the regulation of body composition. GHBP is increased by GH replacement in GH-deficient adults, but does not predict biochemical response to GH replacement. (C) 1999 Churchill Livingstone.
Resumo:
Retroviral entry into cells depends on envelope glycoproteins, whereby receptor binding to the surface-exposed subunit triggers membrane fusion by the transmembrane protein (TM) subunit. We determined the crystal structure at 2.5-Angstrom resolution of the ectodomain of gp21, the TM from human T cell leukemia virus type 1. The gp21 fragment was crystallized as a maltose-binding protein chimera, and the maltose-binding protein domain was used to solve the initial phases by the method of molecular replacement. The structure of gp21 comprises an N-terminal trimeric coiled coil, an adjacent disulfide-bonded loop that stabilizes a chain reversal, and a C-terminal sequence structurally distinct from HIV type 1/simian immunodeficiency virus gp41 that packs against the coil in an extended antiparallel fashion. Comparison of the gp21 structure with the structures of other retroviral TMs contrasts the conserved nature of the coiled coil-forming region and adjacent disulfide-bonded loop with the variable nature of the C-terminal ectodomain segment. The structure points to these features having evolved to enable the dual roles of retroviral TMs: conserved fusion function and an ability to anchor diverse surface-exposed subunit structures to the virion envelope and infected cell surface. The structure of gp21 implies that the N-terminal fusion peptide is in close proximity to the C-terminal transmembrane domain and likely represents a postfusion conformation.
Resumo:
We have previously isolated and characterized murine MYB binding protein (p160) 1a, a protein that specifically interacts with the leucine zipper motif within the negative regulatory domain of the c-Myb proto-oncoprotein, We now describe the molecular cloning of the human MYBBP1A cDNA and chromosomal localization to 17p13.3 by fluorescence in situ hybridization analysis, Given the likely presence of a tumor suppressor gene (or genes) within this region of chromosome 17, the position of MYBBP1A was further mapped by radiation hybrid analysis and was found to lie between markers D17S1828 and D17S938. A P1 artificial chromosome clone containing the 5' region of MYBBP1A was isolated and indicates a physical linkage between MYBBP1A and the 15-lipoxygenase gene (ALOX15), A novel, polymorphic (CA)(25) dinucleotide repeat was also isolated from this PAC and may serve as a useful marker for MYBBP1A and this region of chromosome 17. (C) 1999 Academic Press.
Resumo:
Previously, two binding sites for interleukin 5 (IL-5) were identified on the IL-5 receptor alpha chain (IL-5R alpha). They are located within the CD loop of the first fibronectin type III (FnIII)-like domain and the EF loop of the second FnIII-like domain. The first binding site was identified by exploiting the different abilities of human IL-5R alpha (hIL-5R alpha) and mouse IL-5R alpha (mIL-5R alpha) to bind hIL-5. Here we show that ovine IL-5 (oIL-5) has the ability to activate the hIL-5R alpha but not the mIL-5R alpha. By using chimeras of the mIL-5R alpha and hIL-5R alpha we demonstrate that residues within the first and third FnIII-like domains of mIL-5R alpha are responsible for this lack of activity. Furthermore, mutation of residues on hIL-5R alpha to mIL-5R alpha within the predicted DE and FG loop regions of the third FnIII domain reduces oIL-5 activity, These results show that regions of the third FnIII domain of IL-5R alpha are involved in binding, in addition to the regions in domains one and two of the IL-5R alpha that were identified in an earlier study. (C) 2000 Academic Press.
Resumo:
Polydnaviruses are associated with certain parasitoid wasps and are introduced into the body cavity of the host caterpillar during oviposition. Some of the viral genes are expressed in host tissues and corresponding proteins are secreted into the hemocoel causing suppression of the host immune system. The Cotesia rubecula polydnavirus gene product, CrV1, effectively inactivates hemocytes by mediating cytoskeleton break-down. A precondition for the CrV1 function is the incorporation of the extracellular protein by hemocytes. Here, we show that a coiled-coil domain containing a putative leucine zipper is required for CrV1 function, since removal of this domain abolishes binding and uptake of the CrV1 protein by hemocytes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We have studied the mechanism by which an acidic domain (amino acids 515-583) of the aromatic hydrocarbon receptor (AhR) transactivates a target gene. Studies with glutathione S-transferase fusion proteins demonstrate that the wild-type acidic domain associates in vitro with Myb-binding protein la, whereas a mutant domain (F542A, 1569A) does not. AhR-defective cells reconstituted with an AhR containing the wild-type acidic domain exhibit normal AhR function; however, cells reconstituted with an AhR containing the mutant acidic domain do not function normally. Transient transfection of Myb-binding protein la into mouse hepatoma cells is associated with augmentation of AhR-dependent gene expression. Such augmentation does not occur when Myb-binding protein la is transfected into AhR-defective cells that have been reconstituted with an AhR that lacks the acidic domain. We infer that 1) Myb-binding protein la associates with AhR, thereby enhancing transactivation, and 2) the presence of AhR's acidic domain is both necessary and sufficient for Myb-binding protein la to increase AhR-dependent gene expression.
Resumo:
The myosin-associated giant protein kinases twitchin and titin are composed predominantly of fibronectin- and immunoglobulin-like modules, We report the crystal structures of two autoinhibited twitchin kinase fragments, one from Aplysia and a larger fragment from Caenorhabditis elegans containing an additional C-terminal immunoglobulin-like domain, The structure of the longer fragment shoes that the immunoglobulin domain contacts the protein kinase domain on the opposite side from the catalytic cleft, laterally exposing potential myosin binding residues, Together, the structures reveal the cooperative interactions between the autoregulatory region and the residues from the catalytic domain involved in protein substrate binding, ATP binding, catalysis and the activation loop, and explain the differences between the observed autoinhibitory mechanism and the one found in the structure of calmodulin-dependent kinase I.
Resumo:
A conformationally biased decapeptide agonist of human C5a (C5a(65-74)Y65,F67,P69,P71,D-Ala73 or YSFKPMPLaR) was used as a functional probe of the C5a receptor (C5aR) in order to understand the conformational features in the C-terminal effector region of C5a that are important for C5aR binding and signal transduction. YSFKPMPLaR was a potent, full agonist of C5a, but at higher concentrations had a superefficacious effect compared to the natural factor. The maximal efficacy of this analogue was 216 +/- 56% that of C5a in stimulating the release of beta-glucuronidase from human neutrophils. C5aR activation and binding curves both occurred in the same concentration range with YSFKPMPLaR, characteristics not observed with natural C5a or more conformationally flexible C-terminal agonists. YSFKPMPLaR was then used as a C-terminal effector template onto which was synthesized various C5aR binding determinants from the N-terminal core domain of the natural factor. In general, the presence of N-terminal binding determinants had little effect on either potency or binding affinity when the C-terminal effector region was presented to the C5aR in this biologically active conformation. However, one peptide, C5a(12-20)-Ahx-YSFKPMPLaR, expressed a 100-fold increase in affinity for the neutrophil C5aR and a 6-fold increase in potency relative to YSFKPMPLaR. These analyses showed that the peptides used in this study have up to 25% of the potency of C5a in human fetal artery and up to 5% of the activity of C5a in the PMN enzyme release assay.
Resumo:
DsbA is a protein-folding catalyst from the periplasm of Escherichia coli that interacts with newly translocated polypeptide substrate and catalyzes the formation of disulfide bonds in these secreted proteins. The precise nature of the interaction between DsbA and unfolded substrate is not known. Here, we give a detailed analysis of the DsbA crystal structure, now refined to 1.7 Angstrom, and present a proposal for its interaction with peptide. The crystal structure of DsbA implies flexibility between the thioredoxin and helical domains that may be an important feature for the disulfide transfer reaction. A hinge point for domain motion is identified-the typo IV beta-turn Phe 63-Met 64-Gly 65-Gly 66, which connects the two domains. Three unique features on the active site surface of the DsbA molecule-a groove, hydrophobic pocket, and hydrophobic patch-form an extensive uncharged surface surrounding the active-sits disulfide. Residues that contribute to these surface features are shown to be generally conserved in eight DsbA homologues. Furthermore, the residues immediately surrounding the active-site disulfide are uncharged in all nine DsbA proteins. A model for DsbA-peptide interaction has been derived from the structure of a human thioredoxin:peptide complex. This shows that peptide could interact with DsbA in a manner similar to that with thioredoxin. The active-site disulfide and all three surrounding uncharged surface features of DsbA could, in principle, participate in the binding or stabilization of peptide.
Resumo:
Background: Versutoxin (delta-ACTX-Hv1) is the major component of the venom of the Australian Blue Mountains funnel web spider, Hadronyche versuta. delta-ACTX-Hv1 produces potentially fatal neurotoxic symptoms in primates by slowing the inactivation of voltage-gated sodium channels; delta-ACTX-Hv1 is therefore a useful tool for studying sodium channel function. We have determined the three-dimensional structure of delta ACTX-Hv1 as the first step towards understanding the molecular basis of its interaction with these channels. Results: The solution structure of delta-ACTX-Hv1, determined using NMR spectroscopy, comprises a core beta region containing a triple-stranded antiparallel beta sheet, a thumb-like extension protruding from the beta region and a C-terminal 3(10) helix that is appended to the beta domain by virtue of a disulphide bond. The beta region contains a cystine knot motif similar to that seen in other neurotoxic polypeptides. The structure shows homology with mu-agatoxin-l, a spider toxin that also modifies the inactivation kinetics of vertebrate voltage-gated sodium channels. More surprisingly, delta-ACTX-Hv1 shows both sequence and structural homology with gurmarin, a plant polypeptide. This similarity leads us to suggest that the sweet-taste suppression elicited by gurmarin may result from an interaction with one of the downstream ion channels involved in sweet-taste transduction. Conclusions: delta-ACTX-Hv1 shows no structural homology with either sea anemone or alpha-scorpion toxins, both of which also modify the inactivation kinetics of voltage-gated sodium channels by interacting with channel recognition site 3. However, we have shown that delta-ACTX-Hv1 contains charged residues that are topologically related to those implicated in the binding of sea anemone and alpha-scorpion toxins to mammalian voltage-gated sodium channels, suggesting similarities in their mode of interaction with these channels.
Resumo:
Angiotensin (Ang) I-converting enzyme (ACE) is involved in the control of blood pressure by catalyzing the conversion of Ang I into the vasoconstrictor Ang II and degrading the vasodilator peptide bradykinin. Human ACE also functions as a signal transduction molecule, and the binding of ACE substrates or its inhibitors initiates a series of events. In this study, we examined whether Ang II could bind to ACE generating calcium signaling. Chinese hamster ovary cells transfected with an ACE expression vector reveal that Ang II is able to bind with high affinity to ACE in the absence of the Ang II type 1 and type 2 receptors and to activate intracellular signaling pathways, such as inositol 1,4,5-trisphosphate and calcium. These effects could be blocked by the ACE inhibitor, lisinopril. Calcium mobilization was specific for Ang II, because other ACE substrates or products, namely Ang 1-7, bradykinin, bradykinin 1-5, and N-acetyl-seryl-aspartyl-lysyl-proline, did not trigger this signaling pathway. Moreover, in Tm5, a mouse melanoma cell line endogenously expressing ACE but not Ang II type 1 or type 2 receptors, Ang II increased intracellular calcium and reactive oxygen species. In conclusion, we describe for the first time that Ang II can interact with ACE and evoke calcium and other signaling molecules in cells expressing only ACE. These findings uncover a new mechanism of Ang II action and have implications for the understanding of the renin-Ang system. (Hypertension. 2011;57:965-972.) . Online Data Supplement