862 resultados para ELECTROCHEMICAL-DFT CORRELATION
Resumo:
We present the results of a study of solar wind velocity and magnetic field correlation lengths over the last 35 years. The correlation length of the magnetic field magnitude λ | B| increases on average by a factor of two at solar maxima compared to solar minima. The correlation lengths of the components of the magnetic field λ_{B_{XYZ}} and of the velocity λ_{V_{YZ}} do not show this change and have similar values, indicating a continual turbulent correlation length of around 1.4×106 km. We conclude that a linear relation between λ | B|, VB 2, and Kp suggests that the former is related to the total magnetic energy in the solar wind and an estimate of the average size of geoeffective structures, which is, in turn, proportional to VB 2. By looking at the distribution of daily correlation lengths we show that the solar minimum values of λ | B| correspond to the turbulent outer scale. A tail of larger λ | B| values is present at solar maximum causing the increase in mean value.
Resumo:
The relationship between the magnetic field intensity and speed of solar wind events is examined using ∼3 years of data from the ACE spacecraft. No preselection of coronal mass ejections (CMEs) or magnetic clouds is carried out. The correlation between the field intensity and maximum speed is shown to increase significantly when |B| > 18 nT for 3 hours or more. Of the 24 events satisfying this criterion, 50% are magnetic clouds, the remaining half having no ordered field structure. A weaker correlation also exists between southward magnetic field and speed. Sixteen of the events are associated with halo CMEs leaving the Sun 2 to 4 days prior to the leading edge of the events arriving at ACE. Events selected by speed thresholds show no significant correlation, suggesting different relations between field intensity and speed for fast solar wind streams and ICMEs.
Resumo:
There is a strong desire to exploit transcriptomics data from model species for the genetic improvement of non-model crops. Here, we use gene expression profiles from the commercial model Pinus taeda to identify candidate genes implicated in juvenile-mature wood transition in the non-model relative, P. sylvestris. Re-analysis of 'public domain' SAGE data from xylem tissues of P. taeda revealed 283 mature-abundant and 396 juvenile-abundant tags (P < 0.01), of which 70 and 137, respectively matched to genes with known function. Based on sequence similarity, we then isolated 16 putative homologues of genes that in P. taeda exhibited widest divergence in expression between juvenile and mature samples. Candidate expression levels in P. sylvestris were almost invariably differential between juvenile and mature woody tissue samples among two cohorts of five trees collected from the same seed source and selected for genetic uniformity by genetic distance analysis. However, the direction of differential expression was not always consistent with that described in the original P. taeda SAGE data. Correlation was observed between gene expression and juvenile-mature wood anatomical characteristics by OPLS analysis. Four candidates (alpha-tubulin, porin MIP1, lipid transfer protein and aquaporin like protein) apparently had greatest influence on the wood traits measured. Speculative function of these genes in relation to juvenile-mature wood transition is briefly explored. Thus, we demonstrate the feasibility of exploiting SAGE data from a model species to identify consistently differentially expressed candidates in a related non-model species.
Resumo:
Electrochemical determination of redox active dye species is demonstrated in indigo samples contaminated with high levels of organic and inorganic impurities. The use of a hydrodynamic electrode system based on a vibrating probe (250 Hz, 200 mu m lateral amplitude) allows time-independent diffusion controlled signals to be enhanced and reliable concentration data to be obtained under steady state conditions at relatively fast scan rates up to 4 V s-1In this work the indigo content of a complex plant-derived indigo sample (dye content typically 30%) is determined after indigo is reduced by addition of glucose in aqueous 0.2 M NaOH. The soluble leuco-indigo is measured by its oxidation response at a vibrating electrode. The vibrating electrode, which consisted of a laterally vibrating 500 mu m diameter gold disc, is calibrated with Fe(CN)(6) 3-/4- in 0.1 M KCl and employed for indigo determination at 55, 65, and 75 C in 0.2 M NaOH. Determinations of the indigo content of 25 different samples of plant-derived indigo are compared with those obtained by conventional spectrophotometry. This comparison suggests a significant improvement by the electrochemical method, which appears to be less sensitive to impurities.
Resumo:
The reduction of indigo (dispersed in water) to leuco-indigo (dissolved in water) is an important industrial process and investigated here for the case of glucose as an environmentally benign reducing agent. In order to quantitatively follow the formation of leuco-indigo two approaches based on (i) rotating disk voltammetry and (ii) sonovoltammetry are developed. Leuco-indigo, once formed in alkaline solution, is readily monitored at a glassy carbon electrode in the mass transport limit employing hydrodynamic voltammetry. The presence of power ultrasound further improves the leuco-indigo determination due to additional agitation and homogenization effects. While inactive at room temperature, glucose readily reduces indigo in alkaline media at 65 degrees C. In the presence of excess glucose, a surface dissolution kinetics limited process is proposed following the rate law d eta(leuco-indigo)/dt = k x c(OH-) x S-indigo where eta(leuco-indigo) is the amount of leuco-indigo formed, k = 4.1 x 10(-9) m s(-1) (at 65 degrees C, assuming spherical particles of I gm diameter) is the heterogeneous dissolution rate constant,c(OH-) is the concentration of hydroxide, and Sindigo is the reactive surface area. The activation energy for this process in aqueous 0.2 M NaOH is E-A = 64 U mol(-1) consistent with a considerable temperature effects. The redox mediator 1,8-dihydroxyanthraquinone is shown to significantly enhance the reaction rate by catalysing the electron transfer between glucose and solid indigo particles. (c) 2006 Elsevier Ltd. All fights reserved.
Resumo:
Transition metal alkynyl complexes containing perfluoroaryl groups have been prepared directly from trimethylsilyl-protected mono- and di-ethynyl perfluoroarenes by simple desilylation/metallation reaction sequences. Reactions between Me3SiC CC6F5 and RuCl(dppe)Cp'[Cp' = Cp, Cp*] in the presence of KF in MeOH give the monoruthenium complexes Ru(C CC6F5)(dppe)Cp'[Cp' = Cp (2); Cp* (3)], which are related to the known compound Ru(C CC6F5)(PPh3)(2)Cp (1). Treatment of Me3SiC CC6F5 with Pt-2(mu-dppm)(2)Cl-2 in the presence of NaOMe in MeOH gave the bis(alkynyl) complex Pt-2(mu-dppm)(2)(C CC6F5)(2) (4). The Pd(0)/Cu(I)-catalysed reactions between Au(C CC6F5)(PPh3) and Mo( CBr)(CO)(2) Tp* [Tp* = hydridotris(3.5-dimethylpyrazoyl)borate], Co-3(mu(3)-CBr)(mu-dppm)(CO)(7) or IC CFc [Fc = (eta(5)-C5H4)FeCp] afford Mo( CC CC6F5)(CO)(2)Tp* (5), Co-3(mu 3-CC CC6F5)(mu-dppm)(CO)(7) (6) and FcC CC CC6F5 (7), respectively. The diruthenium complexes 1,4-{Cp'(PP)RuC C}(2)C6F4 [(PP)Cp'=(PPh3)(2)Cp (8); (dppe)Cp (9); (dppe)Cp* (10)] are prepared from 1,4-(Me3SiC C)(2)C6F4 in a manner similar to that described for the monoruthenium complexes 1-3. The non-fluorinated complexes 1,4-{Cp'(PP)RuC C}(2)C6H4 [(PP)Cp' = (PPh3)(2)Cp (11); ( dppe) Cp (12); ( dppe) Cp* (13)], prepared for comparison, are obtained from 1,4-(Me3SiC C)(2)C6H4. Spectro-electrochemical studies of the ruthenium aryl and arylene alkynyl complexes 2-3 and 8-13, together with DFT-based computational studies on suitable model systems, indicate that perfluorination of the aromatic ring has little effect on the electronic structures of these compounds, and that the frontier orbitals have appreciable diethynylphenylene character. Molecular structure determinations are reported for the fluoroaromatic complexes 1, 2, 3, 6 and 10.
Resumo:
Reaction of a group of N-(2'-hydroxyphenyl)benzaldimines, derived from 2-aminophenol and five para-substituted benzaldehydes (the para substituents are OCH3, CH3, H, Cl and NO2), with [Rh(PPh3)(3)Cl] in refluxing toluene in the presence of a base (NEW afforded a family of organometallic complexes of rhodium(III). The crystal structure of one complex has been determined by X-ray crystallography. In these complexes the benzaldimine ligands are coordinated to the metal center, via dissociation of the phenolic proton and the phenyl proton at the ortho position of the phenyl ring in the imine fragment, as dianionic tridentate C,N,O-donors, and the two PPh3 ligands are trans. The complexes are diamagnetic (low-spin d(6), S = 0) and show intense MLCT transitions in the visible region. Cyclic voltammetry shows a Rh(III)-Rh(IV) oxidation within 0.63-0.93 V vs SCE followed by an oxidation of the coordinated benzaldimine ligand. A reduction of the coordinated benzaldimine is also observed within -0.96 to -1.04 V vs SCE. Potential of the Rh(Ill)-Rh(IV) oxidation is found to be sensitive to the nature of the para-substituent. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
13C-2H correlation NMR spectroscopy (13C-2H COSY) permits the identification of 13C and 2H nuclei which are connected to one another by a single chemical bond via the sizeable 1JCD coupling constant. The practical development of this technique is described using a 13C-2H COSY pulse sequence which is derived from the classical 13C-1H correlation experiment. An example is given of the application of 13C-2H COSY to the study of the biogenesis of natural products from the anti-malarial plant Artemisia annua, using a doubly-labelled precursor molecule. Although the biogenesis of artemisinin, the anti-malarial principle from this species, has been extensively studied over the past twenty years there is still no consensus as to the true biosynthetic route to this important natural product – indeed, some published experimental results are directly contradictory. One possible reason for this confusion may be the ease with which some of the metabolites from A. annua undergo spontaneous autoxidation, as exemplified by our recent in vitro studies of the spontaneous autoxidation of dihydroartemisinic acid, and the application of 13C-2H COSY to this biosynthetic problem has been important in helping to mitigate against such processes. In this in vivo application of 13C-2H COSY, [15-13C2H3]-dihydroartemisinic acid (the doubly-labelled analogue of the natural product from this species which was obtained through synthesis) was fed to A. annua plants and was shown to be converted into several natural products which have been described previously, including artemisinin. It is proposed that all of these transformations occurred via a tertiary hydroperoxide intermediate, which is derived from dihyroartemisinic acid. This intermediate was observed directly in this feeding experiment by the 13C-2H COSY technique; its observation by more traditional procedures (e.g., chromatographic separation, followed by spectroscopic analysis of the purified product) would have been difficult owing to the instability of the hydroperoxide group (as had been established previously by our in vitro studies of the spontaneous autoxidation of dihydroartemisinic acid). This same hydroperoxide has been reported as the initial product of the spontaneous autoxidation of dihydroartemisinic acid in our previous in vitro studies. Its observation in this feeding experiment by the 13C-2H COSY technique, a procedure which requires the minimum of sample manipulation in order to achieve a reliable identification of metabolites (based on both 13C and 2H chemical shifts at the 15-position), provides the best possible evidence for its status as a genuine biosynthetic intermediate, rather than merely as an artifact of the experimental procedure.
Resumo:
A family of oxorhenium (V) complexes of newly designed pyridylthioazophenolate ligands has been synthesized and isolated in pure form. The solid state structure of an organic compound (HL1) has been established by X-ray crystallography. The molecular structure observed in the solid state is that the two molecules of the ligand (HL1) in the asymmetric unit have similar geometries, except for the orientation of the pyridine ring. This series of organic moieties acts as tetradentate monobasic NSNO donor chelators in oxorhenium(V) complexes which has been characterized by elemental analyses, IR, H-1-NMR, UV-Vis. The complexes are 1: 1 electrolytes in nature in MeOH solution, the counter anion being ClO4). The electrochemical studies of the [(ReO)-O-V(L)Cl]ClO4 complexes in MeCN using TBAP as supporting electrolyte exhibit quasi-reversible voltammogram showing one-electron couple for [(ReO)-O-VI(L)Cl](2+)-[(ReO)-O-V(L)Cl](+) in the 1.11-1.29 V vs SCE range.
Resumo:
Ab initio calculations using density functional theory have shown that the reactions that occur between artemisinin, 1, a cyclic trioxane active against malaria, and some metal ions and complexes lead to a series of radicals which are probably responsible for its therapeutic activity. In particular it has been shown that the interaction of Fe(H) with artemisinin causes the O-O bond to be broken as indeed does Fe(III) and Cu(I), while Zn(II) does not. Calculations were carried out with Fe(II) in several different forms including the bare ion, [Fe(H2O)(5)](2+) and [FeP(Im)] (P, porphyrin; Im, imadazole) and similar results were obtained. The resulting oxygen-based radicals are readily converted to more stable carbon-based radicals and/or. stable products. Similar radicals and products are also formed from two simple model trioxanes 2 and 3 that show little or no therapeutic action against malaria although some subtle differences were obtained. This suggests that the scaffold surrounding the pharmacophore may be involved in molecular recognition events allowing efficient uptake of this trioxane warhead into the parasite. (C) 2004 Elsevier B.V. All rights reserved.