950 resultados para ELECTRICAL DOUBLE-LAYER
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Mecânica
Resumo:
Digital microfluidics (DMF) is a field which has emerged in the last decade as a re-liable and versatile tool for sensing applications based on liquid reactions. DMF allows the discrete displacement of droplets, over an array of electrodes, by the application of voltage, and also the dispensing from a reservoir, mixing, merging and splitting fluidic operations. The main drawback of these devices is due to the need of high driving volt-ages for droplet operations. In this work, alternative dielectric layers combinations were studied aiming the reduction of these driving voltages. DMF chips were designed, pro-duced and optimized according to the theory of electrowetting-on-dielectric, adopting different combinations of parylene-C and tantalum pentoxide (Ta2O5) as dielectric ma-terials, and Teflon as hydrophobic layer. With both devices’ configurations, i.e., Parylene as single dielectric, and multilayer chips combining Parylene and Ta2O5, it was possible to perform all the fluidic opera-tions in the microliter down to hundreds of nanoliters range. Multilayer chips presented significant reduction on driving voltages for droplet op-erations in silicone oil filler medium: from 70 V (parylene only) down to 30 V (parylene/Ta2O5) for dispensing; and from 50 V (parylene only) down to 15 V (parylene/Ta2O5) for movement. Peroxidase colorimetric reactions were successfully performed as proof-of-concept, using multilayer configuration devices.
Resumo:
This thesis is one of the first reports of digital microfluidics on paper and the first in which the chip’s circuit was screen printed unto the paper. The use of the screen printing technique, being a low cost and fast method for electrodes deposition, makes the all chip processing much more aligned with the low cost choice of paper as a substrate. Functioning chips were developed that were capable of working at as low as 50 V, performing all the digital microfluidics operations: movement, dispensing, merging and splitting of the droplets. Silver ink electrodes were screen printed unto paper substrates, covered by Parylene-C (through vapor deposition) as dielectric and Teflon AF 1600 (through spin coating) as hydrophobic layer. The morphology of different paper substrates, silver inks (with different annealing conditions) and Parylene deposition conditions were studied by optical microscopy, AFM, SEM and 3D profilometry. Resolution tests for the printing process and electrical characterization of the silver electrodes were also made. As a showcase of the applications potential of these chips as a biosensing device, a colorimetric peroxidase detection test was successfully done on chip, using 200 nL to 350 nL droplets dispensed from 1 μL drops.
Resumo:
INTRODUCTION: Antibiotic-associated diarrhea (AAD) is an important side effect of this specific class of drugs. The objective of this study was to investigate the effect of the use of probiotics in the treatment of AAD. METHODS: A group of hospitalized patients, who contracted diarrhea during or after 7 days of suspension of antimicrobial medication, was blindly randomized to receive a standardized diet associated with the use of the probiotics (Lactobacillus casei and Bifidobacterium breve) or its corresponding placebo, three times a day. RESULTS: Seventy patients were studied. For the experimental (n=35) and control (n=35) groups, respectively, the average time of treatment was 5.06±2.18 and 5.49±3.17 days (p=0.95), and the average duration of diarrhea, among those who were healed, was 4.87±2.13 and 4.52±2.55 days (p=0.36). Four (11.4%) patients who received probiotics and ten (28.6%) who received the placebo were not cured (p=0.13), and relapse rates were similar between both groups. Seven patients from each group, in addition to diarrhea, presented cases of bloating and/or abdominal cramps and/or vomiting (p=1.00). CONCLUSIONS: In this light, it is concluded that L. casei associated with B. breve, in the administered dosage and frequency, has no effect on the antibiotic-associated diarrhea. Similar studies need to be conducted with higher doses of these or other probiotics.
Resumo:
The use, manipulation and application of electrical currents, as a controlled interference mechanism in the human body system, is currently a strong source of motivation to researchers in areas such as clinical, sports, neuroscience, amongst others. In electrical stimulation (ES), the current applied to tissue is traditionally controlled concerning stimulation amplitude, frequency and pulse-width. The main drawbacks of the transcutaneous ES are the rapid fatigue induction and the high discomfort induced by the non-selective activation of nervous fibers. There are, however, electrophysiological parameters whose response, like the response to different stimulation waveforms, polarity or a personalized charge control, is still unknown. The study of the following questions is of great importance: What is the physiological effect of the electric pulse parametrization concerning charge, waveform and polarity? Does the effect change with the clinical condition of the subjects? The parametrization influence on muscle recruitment can retard fatigue onset? Can parametrization enable fiber selectivity, optimizing the motor fibers recruitment rather than the nervous fibers, reducing contraction discomfort? Current hardware solutions lack flexibility at the level of stimulation control and physiological response assessment. To answer these questions, a miniaturized, portable and wireless controlled device with ES functions and full integration with a generic biosignals acquisition platform has been created. Hardware was also developed to provide complete freedom for controlling the applied current with respect to the waveform, polarity, frequency, amplitude, pulse-width and duration. The impact of the methodologies developed is successfully applied and evaluated in the contexts of fundamental electrophysiology, psycho-motor rehabilitation and neuromuscular disorders diagnosis. This PhD project was carried out in the Physics Department of Faculty of Sciences and Technology (FCT-UNL), in straight collaboration with PLUX - Wireless Biosignals S.A. company and co-funded by the Foundation for Science and Technology.
Resumo:
A potentially renewable and sustainable source of energy is the chemical energy associated with solvation of salts. Mixing of two aqueous streams with different saline concentrations is spontaneous and releases energy. The global theoretically obtainable power from salinity gradient energy due to World’s rivers discharge into the oceans has been estimated to be within the range of 1.4-2.6 TW. Reverse electrodialysis (RED) is one of the emerging, membrane-based, technologies for harvesting the salinity gradient energy. A common RED stack is composed by alternately-arranged cation- and anion-exchange membranes, stacked between two electrodes. The compartments between the membranes are alternately fed with concentrated (e.g., sea water) and dilute (e.g., river water) saline solutions. Migration of the respective counter-ions through the membranes leads to ionic current between the electrodes, where an appropriate redox pair converts the chemical salinity gradient energy into electrical energy. Given the importance of the need for new sources of energy for power generation, the present study aims at better understanding and solving current challenges, associated with the RED stack design, fluid dynamics, ionic mass transfer and long-term RED stack performance with natural saline solutions as feedwaters. Chronopotentiometry was used to determinate diffusion boundary layer (DBL) thickness from diffusion relaxation data and the flow entrance effects on mass transfer were found to avail a power generation increase in RED stacks. Increasing the linear flow velocity also leads to a decrease of DBL thickness but on the cost of a higher pressure drop. Pressure drop inside RED stacks was successfully simulated by the developed mathematical model, in which contribution of several pressure drops, that until now have not been considered, was included. The effect of each pressure drop on the RED stack performance was identified and rationalized and guidelines for planning and/or optimization of RED stacks were derived. The design of new profiled membranes, with a chevron corrugation structure, was proposed using computational fluid dynamics (CFD) modeling. The performance of the suggested corrugation geometry was compared with the already existing ones, as well as with the use of conductive and non-conductive spacers. According to the estimations, use of chevron structures grants the highest net power density values, at the best compromise between the mass transfer coefficient and the pressure drop values. Finally, long-term experiments with natural waters were performed, during which fouling was experienced. For the first time, 2D fluorescence spectroscopy was used to monitor RED stack performance, with a dedicated focus on following fouling on ion-exchange membrane surfaces. To extract relevant information from fluorescence spectra, parallel factor analysis (PARAFAC) was performed. Moreover, the information obtained was then used to predict net power density, stack electric resistance and pressure drop by multivariate statistical models based on projection to latent structures (PLS) modeling. The use in such models of 2D fluorescence data, containing hidden, but extractable by PARAFAC, information about fouling on membrane surfaces, considerably improved the models fitting to the experimental data.
Resumo:
The present dissertation focuses on the research of the recent approach of innovative high-temperature superconducting stacked tapes in electrical ma-chines applications, taking into account their potential benefits as an alternative for the massive superconducting bulks, mainly related with geometric and me-chanical flexibility. This work was developed in collaboration with Institut de Ciència de Ma-terials de Barcelona (ICMAB), and is related with evaluation of electrical and magnetic properties of the mentioned superconducting materials, namely: analysis of magnetization of a bulk sample through simulations carried out in the finite elements COMSOL software; measurement of superconducting tape resistivity at liquid nitrogen and room temperatures; and, finally, development and testing of a frequency controlled superconducting motor with rotor built by superconducting tapes. In the superconducting state, results showed a critical current density of 140.3 MA/m2 (or current of 51.15 A) on the tape and a 1 N∙m developed motor torque, independent from the rotor position angle, typical in hysteresis motors.
Resumo:
White Color tuning is an attractive feature that Organic Light Emitting Diodes (OLEDs) offer. Up until now, there hasn’t been any report that mix both color tuning abilities with device stability. In this work, White OLEDs (W-OLEDs) based on a single RGB blend composed of a blue emitting N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) doped with a green emitting Coumarin-153 and a red emitting 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM1) dyes were produced. The final device structure was ITO/Blend/Bathocuproine (BCP)/ Tris(8-hydroxyquinolinato)aluminium (Alq3)/Al with an emission area of 0.25 cm2. The effects of the changing in DCM1’s concentration (from 0.5% to 1% wt.) allowed a tuning in the final white color resulting in devices capable of emitting a wide range of tunes – from cool to warm – while also keeping a low device complexity and a high stabilitty. Moreover, an explanation on the optoelectrical behavior of the device is presented. The best electroluminescense (EL) points toward 160 cd/m2 of brightness and 1.1 cd/A of efficiency, both prompted to being enhanced. An Impedance Spectroscopy (IS) analysis allowed to study both the effects of BCP as a Hole Blocking Layer and as an aging probe of the device. Finally, as a proof of concept, the emission was increased 9 and 64 times proving this structure can be effectively applied for general lighting.
Resumo:
Double pylorus is an unusual condition in which a double communication between the gastric antrum and the duodenal bulb occurs. It may be congenital, or it may be acquired complication of peptic ulcer disease. We present a case of double pylorus in a gentleman with epigastric pain and previous history of peptic ulcer disease. The relationship between Helicobacter pylori and this disease was assessed. A review of the literature, the role of associated diseases and the role of H. pylori are discussed.
Resumo:
This thesis project concentrated on both the study and treatment of an early 20th century male portrait in oil from Colecção Caixa Geral de Depósitos, Lisbon, Portugal. The portrait of Januário Correia de Almeida, exhibits a tear (approximately 4.0 cm by 2.3 cm) associated with paint loss on the right upper side, where it is possible to observe an unusually thick size layer (approximately 50 microns) and an open weave mesh canvas. Size layers made from animal glue remain subject to severe dimensional changes due to changes in relative humidity (RH), thereby affecting the stability of the painting. In this case, the response to moisture of the size layer is minimal and the painting is largely uncracked with very little active flaking. This suggests that the size layer has undergone pre-treatment to render it unresponsive to moisture or water. Reconstructions based on late nineteenth century recipes using historically appropriate materials are used to explore various options for modifying the characteristics of gelatine, some of which may relate to the Portrait’s size layer. The thesis is separated into two parts: Part 1: Describes the history, condition, materials and techniques of the painting. It also details the treatment of Januário Correia de Almeida as well as the choices made and problems encountered during the treatment. Part 2: Discusses the history of commercial gelatine production, the choice of the appropriate animal source to extract the collagen to produce reconstructions of the portrait’s size layer as well as the characterization of selected reconstructions. The execution of a shallow textured infill led to one publication and one presentation: Abstract accepted for presentation and publication, International Meeting on Retouching of Cultural Heritage (RECH3), Francisco Brites, Leslie Carlyle and Raquel Marques, ‘’Hand building a Low Profile Textured Fill for a Large Loss’’.
Resumo:
This work reviews the recent research on ion and UV irradiation of β-
Resumo:
This work will discuss the use of different paper membranes as both the substrate and dielectric for field-effect memory transistors. Three different nanofibrillated cellulose membranes (NFC) were used as the dielectric layer of the memory transistors (NFC), one with no additives, one with an added polymer PAE and one with added HCl. Gallium indium zinc oxide (GIZO) was used as the device’s semiconductor and gallium aluminium zinc oxide (GAZO) was used as the gate electrode. Fourier transform infrared spectroscopy (FTIR) was used to access the water content of the paper membranes before and after vacuum. It was found that the devices recovered their water too quickly for a difference to be noticeable in FTIR. The transistor’s electrical performance tests yielded a maximum ION/IOFF ratio of around 3,52x105 and a maximum subthreshold swing of 0,804 V/decade. The retention time of the dielectric charge that grants the transistor its memory capabilities was accessed by the measurement of the drain current periodically during 144 days. During this period the mean drain current did not lower, leaving the retention time of the device indeterminate. These results were compared with similar devices revealing these devices to be at the top tier of the state-of-the-art.
Resumo:
This work demonstrates the role of defects generated during rapid thermal annealing of pulsed laser deposited ZnO/Al2O3 multilayer nanostructures in presence of vacuum at different temperatures (Ta) (500–900 C) on their electrical conductance and optical characteristics. Photoluminescence (PL) emissions show the stronger green emission at Ta 600 C and violet–blue emission at TaP800 C, and are attributed to oxygen vacancies and zinc related defects (zinc vacancies and interstitials) respectively. Current–voltage (I–V) characteristics of nanostructures with rich oxygen vacancies and zinc related defects display the electroforming free resistive switching (RS) characteristics. Nanostructures with rich oxygen vacancies exhibit conventional and stable RS behavior with high and low resistance states (HRS/LRS) ratio 104 during the retention test. Besides, the dominant conduction mechanism of HRS and LRS is explained by trap-controlled-space-charge limited conduction mechanism, where the oxygen vacancies act as traps. On the other hand, nanostructures with rich zinc related defects show a diode-like RS behavior. The rectifying ratio is found to be sensitive on the zinc interstitials concentration. It is assumed that the rectifying behavior is due to the electrically formed interface layer ZnAl2O4 at the Zn defects rich ZnO crystals – Al2O3 x interface and the switching behavior is attributed to the electron trapping/de-trapping process at zinc vacancies.
Resumo:
The interesting properties of thermoplastics elastomers can be combined with carbon nanotubes (CNT) for the development of large strain piezoresistive composites for sensor applications. Piezoresistive properties of the composites depend on CNT content, with the gauge factor increasing for concentrations around the percolation threshold, mechanical and electrical hysteresis. The SBS copolymer composition (butadiene/styrene ratio) influences the mechanical and electrical hysteresis of composites and, therefore, the piezoresistive response. This work reports on the electrical and mechanical response of CNT/SBS composites with 4%wt nanofiller content, due to the larger electromechanical response. C401 and C540 SBS copolymers with 80% and 60% butadiene content, respectively have been selected. The copolymer with larger amount of soft phase (C401) shows a rubber-like mechanical behavior, with mechanical hysteresis increasing linearly with strain until 100% strain. The copolymer with the larger amount of hard phase (C540) just shows rubber-like behavior for low strains. The piezoresistive sensibility is similar for both composites for low strains, with a GF≈ 5 for 5% strain. The electrical hysteresis shows opposite behavior than the mechanical hysteresis, increasing with strain for both composites, but with higher increase for softer copolymer, C401. The GF increases with increasing strain, but this increase is larger for composites with lower amounts of soft phase due to the distinct initial modulus and deformation of the soft and hard phases of the copolymer. The soft phase shows larger strain under a given stress than the harder phase and the conductive pathway rearrangements in the composites are different for both phases, the harder copolymer (C540) showing higher piezoresistive sensibility, GF≈ 18, for 20% strain.