770 resultados para ECAP compaction


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two types of sodium carbonate powder produced by spray drying (SD) and dry neutralisation (DN) were studied for their compaction properties using a uniaxial compression tester. Dry neutralised sodium carbonate showed a greater resistance to compression and also produced a weaker compact when compressed to 100kPa. Differential Scanning Calorimetry (DSC) showed that both types of powder were predominantly amorphous in nature. Moisture sorption measurements showed that both powders behaved in a similar way below 50% RH. However, dry neutralised sodium carbonate had a high moisture affinity above this RH. On examining the particle structures using Scanning Electron Microscopy (SEM), the most likely explanation for the increased tendency of spray dried sodium carbonate to form strong compacts was the hollow particle structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two types of sodium carbonate powder produced by spray drying (SD) and dry neutralization (DN) were studied for their compaction properties using a uniaxial compression tester. A comparison was also made with Persil washing powder. Dry neutralized sodium carbonate showed greater resistance to compression and also produced a weaker compact when compressed to 100 kPa. Spray-dried sodium carbonate had an absence of fine particles but compacted easily. Differential scanning calorimetry (DSC) showed that both types of powder were predominantly amorphous in nature. Moisture sorption measurements showed that both powders behaved in a similar way below 50% relative humidity (RH). However, dry neutralized sodium carbonate had a high moisture affinity above this RH. Particle structures were also examined using scanning electron microscopy, showing the heterogeneous interior of the spray-dried particles. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new generation of surface plasmonic optical fibre sensors is fabricated using multiple coatings deposited on a lapped section of a single mode fibre. Post-deposition UV laser irradiation using a phase mask produces a nano-scaled surface relief grating structure, resembling nano-wires. The overall length of the individual corrugations is approximately 14 μm with an average full width half maximum of 100 nm. Evidence is presented to show that these surface structures result from material compaction created by the silicon dioxide and germanium layers in the multi-layered coating and the surface topology is capable of supporting localised surface plasmons. The coating compaction induces a strain gradient into the D-shaped optical fibre that generates an asymmetric periodic refractive index profile which enhances the coupling of the light from the core of the fibre to plasmons on the surface of the coating. Experimental data are presented that show changes in spectral characteristics after UV processing and that the performance of the sensors increases from that of their pre-UV irradiation state. The enhanced performance is illustrated with regards to change in external refractive index and demonstrates high spectral sensitivities in gaseous and aqueous index regimes ranging up to 4000 nm/RIU for wavelength and 800 dB/RIU for intensity. The devices generate surface plasmons over a very large wavelength range, (visible to 2 μm) depending on the polarization state of the illuminating light. © 2013 SPIE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel surface plasmonic optical fiber sensors have been fabricated using multiple coatings deposited on a lapped section of a single mode fiber. UV laser irradiation processing with a phase mask produces a nano-scaled surface relief grating structure resembling nano-wires. The resulting individual corrugations produced by material compaction are approximately 20 μm long with an average width at half maximum of 100 nm and generate localized surface plasmons. Experimental data are presented that show changes in the spectral characteristics after UV processing, coupled with an overall increase in the sensitivity of the devices to surrounding refractive index. Evidence is presented that there is an optimum UV dosage (48 joules) over which no significant additional optical change is observed. The devices are characterized with regards to change in refractive index, where significantly high spectral sensitivities in the aqueous index regime are found, ranging up to 4000 nm/RIU for wavelength and 800 dB/RIU for intensity. © 2013 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whey proteins may be fractionated by isoelectric precipitation followed by centrifugal recovery of the precipitate phase. Transport and processing of protein precipitates may alter the precipitate particle properties, which may affect how they behave in subsequent processes. For example, the transport of precipitate solution through pumps, pipes and valves and into a centrifugal separator may cause changes in particle size and density, which may affect the performance of the separator. This work investigates the effect of fluid flow intensity, flow geometry and exposure time on the breakage of whey protein precipitates: Computational fluid dynamics (CFD) was used to quantify the flow intensity in different geometries. Flow geometry can have a critical impact on particle breakage. Sharp geometrical transitions induce large increases in turbulence that can result in substantial particle breakage. As protein precipitate particles break, they tend to form denser more compact structures. The reduction in particle size and increase in compaction is due to breakage. This makes the particles become more resistant to further breakage as particle compactness increases. The effect of flow intensity on particle breakage is coupled to exposure time, with greater exposure time producing more breakage. However, it is expected that the particles will attain an equilibrium particle size and density after prolonged exposure in a constant flow field where no further breakage will occur with exposure time. © 2005 Institution of Chemical Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To reveal the moisture migration mechanism of the unsaturated red clays, which are sensitive to water content change and widely distributed in South China, and then rationally use them as a filling material for highway embankments, a method to measure the water content of red clay cylinders using X-ray computed tomography (CT) was proposed and verified. Then, studies on the moisture migrations in the red clays under the rainfall and ground water level were performed at different degrees of compaction. The results show that the relationship between dry density, water content, and CT value determined from X-ray CT tests can be used to nondestructively measure the water content of red clay cylinders at different migration time, which avoids the error reduced by the sample-to-sample variation. The rainfall, ground water level, and degree of compaction are factors that can significantly affect the moisture migration distance and migration rate. Some techniques, such as lowering groundwater table and increasing degree of compaction of the red clays, can be used to prevent or delay the moisture migration in highway embankments filled with red clays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper introduces an encoding of knowledge representation statements as regular languages and proposes a two-phase approach to processing of explicitly declared conceptual information. The idea is presented for the simple conceptual graphs where conceptual pattern search is implemented by the so called projection operation. Projection calculations are organised into off-line preprocessing and run-time computations. This enables fast run-time treatment of NP-complete problems, given that the intermediate results of the off-line phase are kept in suitable data structures. The experiments with randomly-generated, middle-size knowledge bases support the claim that the suggested approach radically improves the run-time conceptual pattern search.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The acceleration of solid dosage form product development can be facilitated by the inclusion of excipients that exhibit poly-/multi-functionality with reduction of the time invested in multiple excipient optimisations. Because active pharmaceutical ingredients (APIs) and tablet excipients present diverse densification behaviours upon compaction, the involvement of these different powders during compaction makes the compaction process very complicated. The aim of this study was to assess the macrometric characteristics and distribution of surface charges of two powders: indomethacin (IND) and arginine (ARG); and evaluate their impact on the densification properties of the two powders. Response surface modelling (RSM) was employed to predict the effect of two independent variables; Compression pressure (F) and ARG percentage (R) in binary mixtures on the properties of resultant tablets. The study looked at three responses namely; porosity (P), tensile strength (S) and disintegration time (T). Micrometric studies showed that IND had a higher charge density (net charge to mass ratio) when compared to ARG; nonetheless, ARG demonstrated good compaction properties with high plasticity (Y=28.01MPa). Therefore, ARG as filler to IND tablets was associated with better mechanical properties of the tablets (tablet tensile strength (σ) increased from 0.2±0.05N/mm2 to 2.85±0.36N/mm2 upon adding ARG at molar ratio of 8:1 to IND). Moreover, tablets' disintegration time was shortened to reach few seconds in some of the formulations. RSM revealed tablet porosity to be affected by both compression pressure and ARG ratio for IND/ARG physical mixtures (PMs). Conversely, the tensile strength (σ) and disintegration time (T) for the PMs were influenced by the compression pressure, ARG ratio and their interactive term (FR); and a strong correlation was observed between the experimental results and the predicted data for tablet porosity. This work provides clear evidence of the multi-functionality of ARG as filler, binder and disintegrant for directly compressed tablets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Sweden, during recent years, a new type of mixing protocol has been applied, in which the order of mixing is changed from the conventional method. Improved workability and diminished mixing and compaction energy needs have been important drivers for this. Considering that it is the mastic phase, which is modified by changing the mixing order, it provides an interesting case study for explaining the mechanisms of workability in connection with the mastic phase. To do so, an analytical viscosity framework was combined with a mixture morphology framework to upscale to the mixing level and tribology principles to explain the interaction between the mastic and the aggregates. From the mastic viscosity protocol, it was found that the mixing order significantly affects the resulting mastic viscosity. To analyse the effect of this on the workability and resulting mixture performance, X-ray computed tomography was used to analyse mixtures produced by the two different mixing sequences. Mechanical testing was utilised to determine the long-term mechanical performance. In this part of the study, mastic viscosity as a function of particle concentration and distribution was directly coupled to improved mixture workability and enhanced long-term performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spectral properties of long-period gratings (LPGs) fabricated in photonic crystal fibers using femtosecond laser pulses by the point-by-point technique, without oil-immersion of the fiber, are investigated in detail. Postfabrication spectral monitoring at room temperature showed significant long-term instability of the gratings and stable spectra only after 600 h. The stabilized spectral properties of the gratings improved with increasing annealing temperature. The observed changes in resonant wavelength, optical strength, and grating birefringence were correlated to the laser inscription energy and were further used to study the mechanism of femtosecond inscription. Furthermore, the femtosecond-laser inscribed LPGs were compared to electric-arc fabricated LPGs. Comparison of experimental results with theoretical models of LPGs and laser propagation during inscription indicate that the major processes responsible for the index change are permanent compaction and thermally induced strain, the latter can be significantly changed through annealing. © 2011 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil elevation affects tidal inundation period, inundation frequency, and overall hydroperiod, all of which are important ecological factors affecting species recruitment, composition, and survival in wetlands. Hurricanes can dramatically affect a site’s soil elevation. We assessed the impact of Hurricane Wilma (2005) on soil elevation at a mangrove forest location along the Shark River in Everglades National Park, Florida, USA. Using multiple depth surface elevation tables (SETs) and marker horizons we measured soil accretion, erosion, and soil elevation. We partitioned the effect of Hurricane Wilma’s storm deposit into four constituent soil zones: surface (accretion) zone, shallow zone (0–0.35 m), middle zone (0.35–4 m), and deep zone (4–6 m). We report expansion and contraction of each soil zone. Hurricane Wilma deposited 37.0 (±3.0 SE) mm of material; however, the absolute soil elevation change was + 42.8 mm due to expansion in the shallow soil zone. One year post-hurricane, the soil profile had lost 10.0 mm in soil elevation, with 8.5 mm of the loss due to erosion. The remaining soil elevation loss was due to compaction from shallow subsidence. We found prolific growth of new fine rootlets (209 ± 34 SE g m−2) in the storm deposited material suggesting that deposits may become more stable in the near future (i.e., erosion rate will decrease). Surficial erosion and belowground processes both played an important role in determining the overall soil elevation. Expansion and contraction in the shallow soil zone may be due to hydrology, and in the middle and bottom soil zones due to shallow subsidence. Findings thus far indicate that soil elevation has made substantial gains compared to site specific relative sea-level rise, but data trends suggest that belowground processes, which differ by soil zone, may come to dominate the long term ecological impact of storm deposit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study is based on rock mechanical tests of samples from platform carbonate strata to document their petrophysical properties and determine their potential for porosity loss by mechanical compaction. Sixteen core-plug samples, including eleven limestones and five dolostones, from Miocene carbonate platforms on the Marion Plateau, offshore northeast Australia, were tested at vertical effective stress, sigma1', of 0-70 MPa, as lateral strain was kept equal to zero. The samples were deposited as bioclastic facies in platform-top settings having paleo-water depths of <10-90 m. They were variably cemented with low-Mg calcite and five of the samples were dolomitized before burial to present depths of 39-635 m below sea floor with porosities of 8-46%. Ten samples tested under dry conditions had up to 0.22% strain at sigma1' = 50 MPa, whereas six samples tested saturated with brine, under drained conditions, had up to 0.33% strain. The yield strength was reached in five of the plugs. The measured strains show an overall positive correlation with porosity. Vp ranges from 3640 to 5660 m/s and Vs from 1840 to 3530 m/s. Poisson coefficient is 0.20-0.33 and Young's modulus at 30 MPa ranged between 5 and 40 GPa. Water saturated samples had lower shear moduli and slightly higher P- to S-wave velocity ratios. Creep at constant stress was observed only in samples affected by pore collapse, indicating propagation of microcracks. Although deposited as loose carbonate sand and mud, the studied carbonates acquired reef-like petrophysical properties by early calcite and dolomite cementation. The small strains observed experimentally at 50 MPa indicate that little mechanical compaction would occur at deeper burial. However, as these rocks are unlikely to preserve their present high porosities to 4-5 km depth, further porosity loss would proceed mainly by chemical compaction and cementation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Observations of snow properties, superimposed ice, and atmospheric heat fluxes have been performed on first-year and second-year sea ice in the western Weddell Sea, Antarctica. Snow in this region is particular as it does usually survive summer ablation. Measurements were performed during Ice Station Polarstern (ISPOL), a 5-week drift station of the German icebreaker RV Polarstern. Net heat flux to the snowpack was 8 W/m**2, causing only 0.1 to 0.2 m of thinning of both snow cover types, thinner first-year and thicker second-year snow. Snow thinning was dominated by compaction and evaporation, whereas melt was of minor importance and occurred only internally at or close to the surface. Characteristic differences between snow on first-year and second-year ice were found in snow thickness, temperature, and stratigraphy. Snow on second-year ice was thicker, colder, denser, and more layered than on first-year ice. Metamorphism and ablation, and thus mass balance, were similar between both regimes, because they depend more on surface heat fluxes and less on underground properties. Ice freeboard was mostly negative, but flooding occurred mainly on first-year ice. Snow and ice interface temperature did not reach the melting point during the observation period. Nevertheless, formation of discontinuous superimposed ice was observed. Color tracer experiments suggest considerable meltwater percolation within the snow, despite below-melting temperatures of lower layers. Strong meridional gradients of snow and sea-ice properties were found in this region. They suggest similar gradients in atmospheric and oceanographic conditions and implicate their importance for melt processes and the location of the summer ice edge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mining is an activity of great economic and social value, assisting in the development of the country. However, it can be extremely harmful to the environment if no proper waste management study exists as mitigation measure its effects. Sample some of these harmful effects are pollution: water, through the seepage of waste into the groundwater; soil; of fauna and flora; sound (due to the noise of machines); visual from the residue stored in the open, changing the local landscape; and air. One way to mitigate environmental impacts caused by mining is the proper management of their waste through their use on highways. To that end, this paper proposes to give an appropriate destination to grit coming from the beneficiation of scheelite, due to mining activity from mining group Tomaz Salustino in Brejuí mine, located in the city of Currais Novos in the state of Rio Grande do Norte. This work was developed in four stages. The first comprised the chemical and mineralogical tests, DRX and FRX in which they sought to discover the composition of the material studied. The next step involved the physical characteristics of the waste by means of specific tests and grinding the solid mass, LL and LP. The third stage included the specific tests applied to the pavement, with the compaction test and test Index Support California. Finally, the fourth stage was the mechanical characterization, represented by direct shear tests, both in the flooded condition and not in flooded condition. The technical feasibility of using the modified energie compacted in layers of subbase power has been verified. In normal and intermediate energies is feasible to use less noble as layers as the subgrade. The incorporation of the waste in layers of road pavements provide an alternative to conventionally used in paving aggregates, providing a proper disposal of tailings from scheelite, as well as environmental preservation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The drilling of wells for petroleum extraction generates rocks and soils fragments, among other residues. These fragments are denominated petroleum drilling gravel or simply petroleum drilling residue. On the sites of onshore exploration are formed big deposits of drilling gravel, an expensive final destination material. This work aims at evaluating the addition of drilling residue to a lateritic soil, as composite material, for construction of compacted fills for earth work projects. Soil and residue were evaluated by X-ray diffraction (XRD) and X-ray fluorescence (XRF) and by laboratory tests traditionally used in soil mechanics, as particle-size analysis of soils, determination of liquid and plasticity indexes and compaction test. After soil and residue characterization, soil-residue mixtures were studied, using dosages of 2,5%, 5%, 10%, and 15% of residue in relation to the dry soil mass. These mixtures were submitted to compaction test, CBR, direct shear test and consolidation test. The test results were compared to the current legislation of DNIT for compacted fill construction. The results showed that the mixtures presented the minimal necessary parameters, allowing, from the point of view of geotechnical analysis, the use of these mixtures for construction of compacted fills