1000 resultados para E. Ray Swan
Resumo:
The structure of the 1-alkyl-3-methylimidazolium salts of the dinuclear mu(4)-(O,O,O',O'-ethane-1,2-dioato)-bis[bis(nitrato-O,O)dioxouranate(VI)] anion have been investigated using single crystal X-ray crystallography. In addition, EXAFS and electrochemical studies have been performed on the [C(4)mim](+) salt which is formed following the oxidative dissolution of uranium(IV) oxide in [C(4)mim][NO3]. EXAFS analysis of the solution following UO2 dissolution indicates a mixture of uranyl nitrate and mu(4)-(O,O,O',O'-ethane-1,2-dioato)-bis[bis(nitrato-O,O)dioxouranate(VI)] anions are formed.
Resumo:
X-ray reflectivity measurements in air of thin films of 1-alkyl-3-methylimidazolium salts in the liquid, liquid crystalline and solid states supported on Si( 111) are described. The films show Bragg features in both liquid crystalline and solid phases, but only after an initial annealing cycle. Kiessig fringes are observed only for the 1-octadecyl-3-methyl-imidazolium hexafluorophosphate films and, following analysis using Parratt32, a bi-layer model is proposed whereby the molecules are orientated with ionic groups at both salt-air and salt-silicon interfaces.
Resumo:
One of the grand challenges of contemporary physics is understanding strongly interacting quantum systems comprising such diverse examples as ultracold atoms in traps, electrons in high-temperature superconductors and nuclear matter. Warm dense matter, defined by temperatures of a few electron volts and densities comparable with solids, is a complex state of such interacting matter. Moreover, the study of warm dense matter states has practical applications for controlled thermonuclear fusion, where it is encountered during the implosion phase, and it also represents laboratory analogues of astrophysical environments found in the core of planets and the crusts of old stars, Here we demonstrate how warm dense matter states can be diagnosed and structural properties can be obtained by inelastic X-ray scattering measurements on a compressed lithium sample. Combining experiments and ab initio simulations enables us to determine its microscopic state and to evaluate more approximate theoretical models for the ionic structure.
Resumo:
A curved crystal spectrometer in Johann configuration has been implemented on MAST to obtain values for electron temperature, ion temperature and toroidal velocity. The spectrometer is used to examine medium Z impurities in the soft x-ray region by utilising a Silicon (111) crystal, bent using a 4 pin bending jig, and a CCD detector (Deltat=8 ms). Helium-like Argon emissions from 3.94 to 4.00 Angstrom have been examined using a crystal radius of 859.77 mm. The Bragg angle and crystal radius can be adjusted with relative ease. The spectrometer can be scanned toroidally and poloidally to include a radial view which facilitates absolute velocity measurements by assuming radial velocity =0. Doppler shifts of 2.3x10(-5) Angstrom (1.8 kms(-1)) can be measured. The line of sight is shared with a neutral particle analyzer, which enables in situ ion temperature comparisons. Ray tracing has been used for the development of new imaging spectrometers, using spherical/toroidal crystals, planned to be implemented on MAST. (C) 2004 American Institute of Physics.
Resumo:
We present near-infrared linear spectropolarimetry of a sample of persistent X-ray binaries, Sco X-1, Cyg X-2, and GRS 1915+105. The slopes of the spectra are shallower than what is expected from a standard steady state accretion disk, and can be explained if the near-infrared flux contains a contribution from an optically thin jet. For the neutron star systems, Sco X-1 and Cyg X-2, the polarization levels at 2.4 mu m are 1.3% +/- 0.10% and 5.4% +/- 0.7%, respectively, which is greater than the polarization level at 1.65 mu m. This cannot be explained by interstellar polarization or electron scattering in the anisotropic environment of the accretion flow. We propose that the most likely explanation is that this is the polarimetric signature of synchrotron emission arising from close to the base of the jets in these systems. In the black hole system GRS 1915+105 the observed polarization, although high (5.0% +/- 1.2% at 2.4 mu m), may be consistent with interstellar polarization. For Sco X-1 the position angle of the radio jet on the sky is approximately perpendicular to the near-infrared position angle (electric vector), suggesting that the magnetic field is aligned with the jet. These observations may be a first step toward probing the ordering, alignment, and variability of the outflow magnetic field in a region closer to the central accreting object than is observed in the radio band.
Resumo:
We have performed short-pulse x-ray scattering measurements on laser-driven shock-compressed plastic samples in the warm dense matter regime, providing instantaneous snapshots of the system evolution. Time-resolved and angularly resolved scattered spectra sensitive to the correlation effects in the plasma show the appearance of short-range order within a few interionic separations. Comparison with radiation-hydrodynamic simulations indicates that the shocked plastic is compressed with a temperature of a few electron volts. These results are important for the understanding of the thermodynamic behavior of strongly correlated matter for conditions relevant to both laboratory astrophysics and inertial confinement fusion research.
Resumo:
Recent experimental evidence has challenged the paradigm according to which radiation traversal through the nucleus of a cell is a prerequisite for producing genetic changes or biological responses. Thus, unexposed cells in the vicinity of directly irradiated cells or recipient cells of medium from irradiated cultures can also be affected. The aim of the present study was to evaluate, by means of the medium transfer technique, whether interleukin-8 and its receptor (CXCR1) may play a role in the bystander effect after gamma irradiation of T98G cells in vitro. In fact the cell specificity in inducing the bystander effect and in receiving the secreted signals that has been described suggests that not only the ability to release the cytokines but also the receptor profiles are likely to modulate the cell responses and the final outcome. The dose and time dependence of the cytokine release into the medium, quantified using an enzyme linked immunosorbent assay, showed that radiation causes alteration in the release of interleukin-8 from exposed cells in a dose-independent but time-dependent manner. The relative receptor expression was also affected in exposed and bystander cells.
Resumo:
In dielectronic recombination of hydrogenlike ions an intermediate doubly excited heliumlike ion is formed. Since the K shell is empty, both excited electrons can decay sequentially to the ground state. In this paper we analyze the x-ray radiation emitted from doubly and singly excited heliumlike titanium ions produced inside the Tokyo electron beam ion trap. Theoretical population densities of the singly excited states after the first transition and the transition probabilities of these states into the ground state were also calculated. This allowed theoretical branching ratios to be determined for each manifold. These branching ratios are compared to the experimentally obtained x-ray distribution by fitting across the relevant peak using a convolution of the theoretically obtained resonance strengths and energies. By taking into account 2E1 transitions which are not observed in the experiment, the measured and calculated ratios agree well. This method provides a valuable insight into the transition dynamics of excited highly charged ions.
Resumo:
Measurements of the duration of X-ray lasing pumped with picosecond pulses from the VULCAN optical laser are obtained using a streak camera with 700 fs temporal resolution. Combined with a temporal smearing due to the spectrometer employed, we have measured X-ray laser pulse durations for Ni-like silver at 13.9 nm with a total time resolution of 1.1 ps. For Ni-like silver, the X-ray laser output has a steep rise followed by an approximately exponential temporal decay with measured full-width at half-maximum (FWHM) of 3.7 (+/-0.5) ps. For Ne-like nickel lasing at 23.1 nm, the measured duration of lasing is approximate to10.7 (+/-1) ps (FWHM). An estimate of the duration of the X-ray laser gain has been obtained by temporally resolving spectrally integrated continuum and resonance line emission. For Ni-like silver, this time of emission is approximate to22 (+/-2) ps (FWHM), while for Ne-like nickel we measure approximate to35 (+/-2) ps (FWHM). Assuming that these times of emission correspond to the gain duration, we show that a simple model consistently relates the gain durations to the measured durations of X-ray lasing. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Recent experiments undertaken at the Rutherford Appleton Laboratory to produce X-ray lasing over the 5-30 nm wavelength range are reviewed. The efficiency of lasing is optimized when the main pumping pulse interacts with a preformed plasma. Experiments using double 75-ps pulses and picosecond pulses superimposed on 300-ps background pulses are described. The use of travelling wave pumping with the approximately picosecond pulse experiments is necessary as the gain duration becomes comparable to the time for the X-ray laser pulse to propagate along the target length. Results from a model taking account of laser saturation and deviations from the speed of light c of the travelling wave and X-ray laser group velocity are presented. We show that X-ray laser pulses as short as 2-3 ps can be produced with optical pumping pulses of approximate to1-ps.
Resumo:
We have used XUV lasers to make absolute measurements of the photoabsorption coefficient of Al at energies just below that of the L3 absorption edge at 72.7 eV. Transmission measurements at photon energies of 53.7 and 63.3 eV have been made using Ne-like Ni and Ge XUV lasers. The XUV laser output was recorded in first and second orders using a flat-field spectrometer. Al foils with steps of various thicknesses were placed over the first order diffracted signal, while the second order diffraction was used to monitor the beam profile at each position. The transmission data agree extremely well with the original measurements at these wavelengths made by Henke and co-workers (Henke B L, Gullikson E M and Davis J C 1993 At. Data Nucl. Data Tables 54 18 1), but are in conflict with subsequent measurements which are currently in common use (Gullikson E M, Denham P, Mrowka S and Underwood J H 1994 Phys. Rev. B 49 16 283). The exact values of the absorption coefficients in this region of the spectrum have significant implications for the diagnosis of the energy and intensity output of XUV lasers.
Resumo:
This paper summarises die main results obtained during the two experimental campaigns on TCE X-ray lasers that we have carried out since the last Kyoto X-ray laser Conference in 1998. A two-color (2 omega /1 omega) pumping configuration was tested and led to the observation of a strong lasing line at 16 nm, identified to a 4f-4d transition in Ni-like Ag. A strong x 300-400 enhancement of the 13.9 nm Ni-like 4d-4p lasing emission was obtained when a traveling wave short pulse pumping was applied. Finally the temporal history of the 13.9 nm laser pulse was measured with a high-resolution Streak camera, A very short 2 ps X-ray laser pulse was directly demonstrated for the first time.
Resumo:
We report on a time-resolved study of a Ni-like transient collisionnal X-ray laser with a resolution as high as 1.9 ps The FWHM duration of the Ni-like x-ray laser pulse at 13.99 nin Ag J = 0 -->1 4d-4p line is measured to be as short as similar to2 ps at optimum conditions of pump laser irradiation. This is about four times shorter than was estimated in previous experiments. The x-ray laser signal appears in the rising edge of the continuum emission. The x-ray laser duration rises significantly when the short (heating) pulse duration is increased and when doubling the peak-to-peak delay of the two irradiation pulses, It does not change when the short pulse energy is increased. The results presented are the first direct measurements of the temporal profile of the x-ray laser output at a high resolution.