957 resultados para Dulce Chacón
Resumo:
Heavy metals are used in many industrial processestheirs discard can harm fel effects to the environment, becoming a serious problem. Many methods used for wastewater treatment have been reported in the literature, but many of them have high cost and low efficiency. The adsorption process has been used as effective for the metal remoal ions. This paper presents studies to evaluate the adsorption capacity of vermiculite as adsorbent for the heavy metals removal in a synthetic solution. The mineral vermiculite was characterized by differents techniques: specific surface area analysis by BET method, X-ray diffraction, raiosX fluorescence, spectroscopy in the infraredd region of, laser particle size analysis and specific gravity. The physical characteristics of the material presented was appropriate for the study of adsorption. The adsorption experiments weredriveal finite bath metod in synthetic solutions of copper, nickel, cadmium, lead and zinc. The results showed that the vermiculite has a high potential for adsorption, removing about 100% of ions and with removal capacity values about 85 ppm of metal in solution, 8.09 mg / g for cadmium, 8.39 mg/g for copper, 8.40 mg/g for lead, 8.26 mg/g for zinc and 8.38 mg/g of nickel. The experimental data fit in the Langmuir and Freundlich models. The kinetic datas showed a good correlation with the pseudo-second order model. It was conducteas a competition study among the metals using vermiculiti a adsorbent. Results showed that the presence of various metals in solution does not influence their removal at low concentrations, removing approximat wasely 100 % of all metals present in solutions
Resumo:
Nickel-bases catalysts have been used in several reform reactions, such as in the partial oxidation of methane to obtain H2 or syngas (H2 + CO). High levels of conversion are usually obtained using this family of catalysts, however, their deactivation resulting from carbon deposition still remains a challenge. Different approaches have been tested aiming at minimizing this difficulty, including the production of perovskites and related structures using modern synthesis methods capable of producing low cost materials with controlled microstructural characteristics at industrial scale. To establish grounds for comparison, in the present study LaNixFe1-xO3 (x=0, 0.3 or 0.7) perovskites were prepared following the Pechini method and by microwave assisted self-combustion. All samples were sub sequently calcined at 900 °C to obtain the target phase. The resulting ceramic powders were characterized by thermogravimetric analysis, infrared spectroscopy, X ray diffraction, specific area and temperature programmed reduction tests. Calcined samples were also used in the partial oxidation reaction of methane to evaluate the level of conversion, selectivity and carbon deposition. The results showed that the calcined samples were crystalline and the target phase was formed regardless of the synthesis method. According to results obtained by Rietveld refinement, we observed the formation of 70.0% of LaNi0.3Fe0.7O3 and 30.0% of La2O3 for samples LN3F7-900- P, LN3F7-900-M and 41,6% of LaNi0.7Fe0.3O3, 30.7% of La2NiO4 and 27.7% of La2O3 for samples LN7F3-900-P and LN7F3-900-M.Temperature-programmed profiles of the LaNiO3 sample revealed the presence of a peak around 510 °C, whereas the LaFeO3 sample depicted a peak above 1000°C. The highest l evel of methane conversion was obtained for LaNiO3 synthesized by the Pechini method. Overall, catalysts prepared by the Pechini method depicted better conversion levels compared to those produced by microwave assisted self-combustion
Resumo:
One of the great challenges at present time related with the materials area concerns of products and processes for use in petroleum industry, more precisely related to the Pre-salt area. Progresses were reached in the last years allowing the drilling of the salt layer, with the time reduction for drilling and larger success at the end. For the oil wells companies the preponderant factor is the technology, however, in spite of the progress, a series of challenges is still susceptible to solutions and one of them refers to the slurries preparation for cementing in those areas. Inside of this context, this study had for objective to analyze the influence of the salts NaCl, KCl, CaSO4 and MgSO4 in strength and chemical structure of the hydrated products. As methodology, they were prepared and analyzed cement slurries with varied concentrations of these salts that are commonly found in the saline formations. The salts concentrations used in formulations of the slurries were of 5%, 15% and 30%. The slurries were formulated with specific weight of 15,8 lb / gal and the cement used was Class G. Strength tests were accomplished in samples cured by 24 hours and 28 days. Also were realized crystallographic characterization (XRD) and morphologic (SEM). In agreement with the presented results, it is observed that the largest resistance values are attributed to the slurries with concentration of 15%. There was reduction of the strength values of the slurries formulated with concentration of 30%. Through the characterization microstructural it was possible to note the salts influence in the main cement hydrated products
Preparação de óxidos mistos de níquel e zinco nanoparticulados a partir de combustíveis alternativos
Resumo:
The field of "Materials Chemistry" has been developing in recent years and there has been a great increase of interest in the synthesis and chemical and physical properties of new inorganic solids. New routes of synthesis and synthesis modified has been developed with the aim not only to optimize the processes in laboratory scale, but also on an industrial scale, and make them acceptable by current environmental legislation. The phenomenology of current solid state chemistry properties coupled with the high temperature superconductivity, ferromagnetism, porosity molecular and colors are evidence affected by the synthesis method, which in turn can influence the technological application of these materials. From this understanding, mixed oxides of nickel and zinc nanoparticulate were synthesized by microwave-assisted combustion route using three specific types of organic fuels employing the weight ratios 1:1/2 and 1:1 of cation metallic/fuel, in order to investigate the influence of such proportions to obtain the solids. The new fuels were chosen to replace, for example, urea or glycine that are the fuels most commonly preferred in this kind of synthesis. The powders without heat treatment were studied by Thermogravimetric analysis (TGA), X-Ray Diffraction (XRD) and then calcined at 900°C. After heat treatment, the samples were characterized by analysis of X Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The modified synthesis route porposed was effective for obtaining powders. Both the alternative fuels chosen as the different weight ratios employed, influenced in the morphology and obtaining oxides
Resumo:
The synthesis of zeolites from natural sources of silicon and aluminum are promising alternative routes to obtain porous or zeolite MCM family. Such materials are typically used in catalytic processes and / or adsorption is to obtain new products or for separation and purification processes thereof. Environmental legislation is becoming stricter and requires the use of materials more efficient, aiming to achieve pollution prevention, by gas or liquid contaminants in the environment. In order to obtain a material with environmentally friendly features, this study aimed at the synthesis of zeolite A, from an amorphous sediment, diatomite, which is found in abundance in the northeast region of Brazil, may be substituted for conventional products the production of zeolite, involving higher costs. The methodology for obtaining the "Zeolite A" using as a source of silica and alumina diatomite is simple, since this is a source of silicon, not requiring therefore a structural driver, but also by heat treatment, only drying conventional to remove water. The "zeolite A" was obtained from diatomite, but as an intermediate step we obtained the sodalite. The characterization was made by the following techniques: EDX, XRD, FT-IR, SEM and determining a specific area by the BET method and the BJH method for checking the diameter of pores. By characterization of the obtained material was first demonstrated the achievement of sodalite and after modification of the same, there was obtained zeolite A
Resumo:
Lightweight oilwell cement slurries have been recently studied as a mean to improve zonal isolation and sheath-porous formation adherence. Foamed slurries consisting of Portland cement and air-entraining admixtures have become an interesting option for this application. The loss in hydrostatic pressure as a consequence of cement hydration results in the expansion of the air bubbles entrapped in the cement matrix, thus improving the sheath-porous formation contact. Consequently, slurries are able to better retain their water to complete the hydration process. The main objective of the present study was to evaluate the effect of the addition of an air-entraining admixture on the density, stability and permeability of composite slurries containing Portland cement and diatomite as light mineral load. Successful formulations are potential cementing materials for low fracture gradient oilwells. The experimental procedures used for slurry preparation and characterization were based on the American Petroleum Institute and ABNT guidelines Slurries containing a pre-established concentration of the air-entraining admixture and different contents of diatomite were prepared aiming at final densities of 13 to 15 lb/gal. The results revealed that the reduction of 15 to 25% of the density of the slurries did not significantly affect their strength. The addition of both diatomite and the air-entraining admixture increased the viscosity of the slurry providing better air-bubble retention in the volume of the slurry. Stable slurries depicted bottom to top density variation of less than 1.0 lb/gal and length reduction of the stability sample of 5.86 mm. Finally, permeability coefficient values between 0.617 and 0.406 mD were obtained. Therefore, lightweight oilwell cement slurries depicting a satisfactory set of physicochemical and mechanical properties can be formulated using a combination of diatomite and air-entraining admixtures for low fracture gradient oilwells
Resumo:
The present work deals with the synthesis of materials with perovskite structure with the intention of using them as cathodes in fuel cells SOFC type. The perovskite type materials were obtained by chemical synthesis method, using gelatin as the substituent of citric acid and ethylene glycol, and polymerizing acting as chelating agent. The materials were characterized by X-ray diffraction, thermal analysis, spectroscopy Fourier transform infrared, scanning electron microscopy with EDS, surface area determination by the BET method and Term Reduction Program, TPR. The compounds were also characterized by electrical conductivity for the purpose of observing the possible application of this material as a cathode for fuel cells, solid oxide SOFC. The method using gelatin and polymerizing chelating agent for the preparation of materials with the perovskite structure allows the synthesis of crystalline materials and homogeneous. The results demonstrate that the route adopted to obtain materials were effective. The distorted perovskite structure have obtained the type orthorhombic and rhombohedral; important for fuel cell cathodes. The presentation material properties required of a candidate cathode materials for fuel cells. XRD analysis contacted by the distortion of the structures of the synthesized materials. The analyzes show that the electrical conductivity obtained materials have the potential to act as a cell to the cathode of solid oxide fuel, allowing to infer an order of values for the electrical conductivities of perovskites where LaFeO3 < LaNiO3 < LaNi0,5Fe0,5O3. It can be concluded that the activity of these perovskites is due to the presence of structural defects generated that depend on the method of synthesis and the subsequent heat treatment
Resumo:
The development of activities the of oil and gas sector have promoted the search for suitable materials for cementing oil wells. In the state of the Rio Grande do Norte, the integrity of the cement sheath tends to be impaired during steam injection, a procedure necessary to increase oil recovery in reservoirs with low-viscosity oil. The geopolymer is a material that can be used as alternative cement, since it has been used in the production of fire-resistant components, building structures, and for the control of toxic or radioactive residues. Geopolymers result from condensation polymer alkali aluminosilicates and silicates resulting three-dimensional polymeric structures. They are produced in a manner different from that of Portland cement, which is made an activating solution that is mixed with geopolymer precursor. Among the few works studied allowed us to conclude that the pastes prepared with metakaolin as precursor showed better performance of its properties. Several studies show the addition of waste clay as a means of reducing cost and improving end of the folder properties. On this basis, the goal is to study the influence of the addition of ceramic waste in geopolymer paste. To develop the study of rheology tests were carried out, filtered, thickening time, compressive strength, free water, specific gravity and permeability, according to the American Pretoleum Institute (API). The results for all formulations studied show that the folders have high mechanical strength to a light paste; low filtrate volume, absence of free water, very low permeability, slurry, consistent with a light paste, and thickening time low that can be corrected with the use of a retardant handle. For morphological characterization, microstructural, physical, chemical and thermal tests were carried out by XRD, MEV, DTA, TG, FTIR. In the trial of XRD, it was found that geopolymer is an amorphous material, with a peak of crystalline kaolinite. In tests of TG / DTA, revealed the presence of a significant event, which represents the mass loss related to water, and also observed the reduction of weight loss by increasing the concentration of ceramic waste. In the trial of MEV, we found a uniform matrix without the presence of other phases. In the trial of FT-IR, we observed the presence of the band related to water. From all results it was determined that the optimum concentration range of use is between 2.5 and 5% of waste ceramic
Resumo:
The oil wells cementing is a critical step during the phase of well drilling, because problems during the operation of slurry pumping and an incomplete filling of the annular space between the metal casing and the formation can cause the slurry loss. Therefore, the slurry adopted in primary cementing an oil well must be properly dosed so that these problems are avoided during its pumping. When you drill a well in a weak rock formation requires even more careful, because should be a limit of hydrostatic pressure exerted during cementation, that does not occur rock collapse. With the objective of performing the cementing of a well whose formation is weak or unconsolidated are employed lighter slurries. Thus, this study used slurries with sodium silicate and nano silica in concentrations of 0,1; 0,4; 0,7 e 1,0 gpc, in which the slurries with nano silica showed the rheological parameters higher concentrations of up to 0.7 gpc and for concentration of 1.0 the slurry with sodium silicate obtained the highest values, remaining above the limits for application in fields, mainly wells with low fracture gradient, because a significant increase in viscosity may result in an increase in pressure pumping in operations of secondary cementations. Furthermore, there was no decrease in strength with increasing concentration of additive. Then, it is possible use of these additives to formulate Lighter slurry
Resumo:
Fuel cells are electrochemical devices that convert chemical energy into electricity. Due to the development of new materials, fuel cells are emerging as generating clean energy generator. Among the types of fuel cells, categorized according to the electrode type, the solid oxide fuel cells (SOFC) stand out due to be the only device entirely made of solid particles. Beyond that, their operation temperature is relatively high (between 500 and 1000 °C), allowing them to operate with high efficiency. Another aspect that promotes the use of SOFC over other cells is their ability to operate with different fuels. The CeO2 based materials doped with rare earth (TR+3) may be used as alternatives to traditional NiO-YSZ anodes as they have higher ionic conductivity and smaller ohmic losses compared to YSZ, and can operate at lower temperatures (500-800°C). In the composition of the anode, the concentration of NiO, acting as a catalyst in YSZ provides high electrical conductivity and high electrochemical activity of reactions, providing internal reform in the cell. In this work compounds of NiO - Ce1-xEuxO2-δ (x = 0.1, 0.2 and 0.3) were synthesized from polymeric precursor, Pechini, method of combustion and also by microwave-assisted hydrothermal method. The materials were characterized by the techniques of TG, TPR, XRD and FEG-SEM. The refinement of data obtained by X-ray diffraction showed that all powders of NiO - Cex-1EuxO2-δ crystallized in a cubic phase with fluorite structure, and also the presence of Ni. Through the characterizations can be proved that all routes of preparation used were effective for producing ceramics with characteristics suitable for application as SOFC anodes, but the microwave-assisted hydrothermal method showed a significant reduction in the average grain size and improved control of the compositions of the phases
Resumo:
The materials engineering includes processes and products involving several areas of engineering, allowing them to prepare materials that fulfill the needs of various new products. In this case, this work aims to study a system composed of cement paste and geopolymers, which can contribute to solving an engineering problem that directly involves the exploitation of oil wells subject to loss of circulation. To correct it, has been already proposed the use of granular materials, fibers, reducing the drilling fluid or cement paste density and even surface and downhole mixed systems. In this work, we proposed the development of a slurry mixed system, the first was a cement-based slurry and the second a geopolymer-based slurry. The cement-based slurry was formulated with low density and extenders, 12.0 ppg (1.438 g/cm ³), showing great thixotropic characteristics. It was added nano silica at concentrations of 0.5, 1.0 and 1.5 gps (66.88, 133.76 and 200.64 L/m3) and CaCl2 at concentrations of 0.5, 1, 0 and 1.5%. The second system is a geopolymer-based paste formulated from molar ratios of 3.5 (nSiO2/nAl2O3), 0.27 (nK2O/nSiO2), 1.07 (nK2O/nAl2O3) and 13.99 (nH2O/nK2O). Finally, we performed a mixture of these two systems, for their application for correction of circulation lost. To characterize the raw materials, XRD, XRF, FTIR analysis and titration were performed. The both systems were characterized in tests based on API RP10B. Compressive strength tests were conducted after curing for 24 hours, 7 and 28 days at 58 °C on the cement-based system and the geopolymer-based system. From the mixtures have been performed mixability tests and micro structural characterizations (XRD, SEM and TG). The results showed that the nano silica, when combined with CaCl2 modified the rheological properties of the cement slurry and from the concentration of 1.5 gpc (200.64 L / m³) it was possible to obtain stable systems. The system mixture caused a change in the microstructure of the material by favoring the rate of geopolymer formation to hinder the C3S phase hydration, thus, the production of CSH phases and Portlandite were harmed. Through the mixability tests it can be concluded that the system, due to reduced setting time of the mixture, can be applied to plug lost circulation zones when mixed downhole
Resumo:
Alternative and clean energy generation research has been intensified in last decades. Among the alternatives, fuel cells are one of the most important. There are different types of fuel cells, among which stands out intermediate temperature solid oxide fuel cell (IT-SOFC) matter of the present work. For application as cathode on this type of devices, the ceramic Ba0.5Sr0.5C0.8Fe0.2O3-δ doped with rare earth ions (Nd, Sm) have been quite promising because they show good ionic conductivity and operate at relatively low temperatures (500 - 800°C). In this work, Ba0.5Sr0.5Co0.8Fe0.2O3-δ, (BaSr)0.5Sm0.5Co0.8Fe0.2O3-δ and (BaSr)0.5Nd0.5C0.8Fe0.2O3-δ were obtained by modified Pechini method, making use of gelatin as polymerizing agent. The powders were characterized by X-Ray Diffraction (XRD), Temperature Programmed Reduction (TPR) and Scanning Electron Microscopy (SEM). The perovskite phase was observed in all X-ray patterns for the materials Ba0.5Sr0.5C0.8Fe0.2O3-δ doped with rare earth ions (Nd, Sm). The SEM images showed that the materials have a characteristics porous, with very uniform pore distribution, which are favorable for application as cathodes. Subsequently, screen-printed assymmetrical cells were studied by impedance spectroscopy, to assess the kinetics of the cathode for the reduction reaction of oxygen. The best resistance to the specific area was found for the cathode BSSCF sintered at 1050 °C for 4 hours with around 0.15 Ω.cm2 at 750 °C as well as cathodes BSNCF and BSCF obtained resistances specific area of 0.2 and 0.73 Ω.cm2, respectively, for the same conditions. The polarization curves showed similar behavior to the best cathodes BSSCF and BSNCF, such combination of properties indicates that the film potentially depict good performance as IT-SOFC cathodes
Resumo:
One of the major challenges faced nowadays by oil companies is the exploration of pre-salt basins. Thick salt layers were formed in remote ages as a consequence of the evaporation of sea water containing high concentrations of NaCl and KCl. Deep reservoirs can be found below salt formations that prevent the outflow of oil, thus improving the success in oil prospection. The slurries used in the cement operations of salt layers must be adequate to the properties of those specific formations. At the same time, their resulting properties are highly affected by the contamination of salt in the fresh state. It is t herefore important to address the effects of the presence of salt in the cement slurries in order to assure that the well sheath is able to fulfill its main role to provide zonal isolation and mechanical stability. In this scenario, the objective of the present thesis work was to evaluate the effect of the presence of NaCl and KCl premixed with cement and 40% silica flour on the behavior of cement slurries. Their effect in the presence of CO2 was also investigated. The rheological behavior of slurries containing NaCl and KCl was evaluated along with their mechanical strength. Thermal and microstructural tests were also carried out. The results revealed that the presence of NaCl and KCl affected the pozzolanic activity of silica flour, reducing the strength of the hardened slurries containing salt. Friedel´s salt was formed as a result of the bonding between free Cl- and tricalcium aluminate. The presence of CO2 also contributed to the degradation of the slurries as a result of a process of carbonation/bicarbonataion
Resumo:
Sisal is a renewable agricultural resource adapted to the hostile climatic and soil conditions particularly encountered in the semi-arid areas of the state of Rio Grande do Norte. Consequently, sisal has played a strategic role in the economy of the region, as one of few options of income available in the semi-arid. Find new options and adding value to products manufactured from sisal are goals that contribute not only to the scientific and technological development of the Northeastern region, but also to the increase of the family income for people that live in the semi-arid areas where sisal is grown. Lignocellulosic fibers are extracted from sisal and commonly used to produce both handcrafted and industrial goods including ropes, mats and carpets. Alternatively, addedvalue products can be made using sisal to produce alumina fibers (Al2O3) by biotemplating, which consists in the reproduction of the natural fiber-like structure of the starting material. The objective of this study was to evaluate the conditions necessary to convert sisal into alumina fibers by biotemplating. Alumina fibers were obtaining after pretreating sisal fibers and infiltrating them with a Al2Cl6 saturated solution, alumina sol from aluminum isopropoxide or aluminum gas. Heat-treating temperatures varied from 1200 ºC to 1650 °C. The resulting fibers were then characterized by X-ray diffraction and scanning electronic microscopy. Fibers obtained by liquid infiltration revealed conversion only of the surface of the fiber into α-Al2O3, which yielded limited resistance to handling. Gas infiltration resulted in stronger fibers with better reproduction of the inner structure of the original fiber. All converted fibers consisted of 100% α-Al2O3 suggesting a wide range of technological applications especially those that require thermal isolation
Resumo:
Different types of heterogeneous catalysts of the silicoaluminophosphate type, (SAPO-5, SAPO-11, SAPO-31, SAPO-34 and SAPO-41), molecular sieves with a: AFI, AEL, ATO, CHA and AFO structure, respectively, were synthesized through the hydrothermal method. Using sources such as hydrated alumina (pseudobohemita), phosphoric acid, silica gel, water, as well as, different types of organic structural templates, such as: cetyltrimethylammonium bromide (CTMABr), di-isopropylamine (DIPA), di-n- propylamine (DNPA) and tetraethylammonium hydroxide (TEOS), for the respective samples. During the preparation of the silicoaluminophosphates, the crystallization process of the samples occurred at a temperature of approximately 200 ° C, ranging through periods of 18-72 h, when it was possible to obtain pure phases for the SAPOs. The materials were furthermore washed with deionized water, dried and calcined to remove the molecules of the templates. Subsequently the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), absorption spectroscopy in the infrared region (FT-IR), specific surface area and thermal analysis via TG/DTG. The acidic properties were determined using adsorption of n-butylamine followed by programmed termodessorption. These methods revealed that the SAPO samples showed a typically weak to moderate acidity. However, a small amount of strong acid sites was also detected. The deactivation of the catalysts was conducted by artificially coking the samples, followed by n-hexane cracking reactions in a fixed bed with a continuous flow micro-reactor coupled on line to a gas chromatograph. The main products obtained were: ethane, propane, isobutene, n-butane, n-pentane and isopentane. The Vyazovkin (model-free) kinetics method was used to determine the catalysts regeneration and removal of the coke