938 resultados para Driving attitude
Resumo:
Background: violence against women is a serious problem caused by the social construction of feminineness and masculineness that results in the domination of women by men. Public policies on gender have recently been developed in order to confront the problem. But what exactly are the problems faced by women? Purposes: to survey and analyse cases of violence against women reported to the police, as recorded at the Police Stations for Women`s Defence (PSWDs), and to reconstruct the procedures that women must go through in order to denounce their aggressors. Methodology: this quantitative, exploratory and descriptive study was undertaken during 2006-2007 in the city of Itapevi, Sao Paulo metropolitan region, Brazil. As there is no PSWD data were collected from police reports from PSWDs of neighbouring cities. Findings: malicious physical injury (49%) and threats (42%) were the most commonly reported types of violence. The victims were aged between 20 and 49 years (93%). Almost all of the aggressors (97%) were men and most had an intimate relationship with their victim. The use of alcoholic beverages was linked to approximately 25% of the cases. Conclusion: women who are victims of domestic violence in Itapevi report that going through PSWDs of neighbouring cities is a difficult, isolated, long and expensive process that often, provides no institutional protection. Implications for practice: there is an urgent requirement for judicial-assistance and support close to home in order to provide a quality service and follow-up for these women and their aggressors; to provide training for the professionals called to attend them at police stations; and for a caring attitude from health-care professionals.,0 2010 Elsevier Ltd. All rights reserved.
Resumo:
Since the beginning of Physical Education entrance in the brazilin public schools, the game has been frequently used as content, and in the course of time that practice seems to be intensified. In spite of many approaches of different purposes to justify its pedagogic usefulness, the game has been used as an indiscriminate way due to the fascination that it provides to the students. The present study searches for a description and analysis of children`s (10-12 years old) attitudes behaviors in games, on Physical Education classes, inside a public school. The study was accomplished with the researcher also attending as a teacher (action research). For the accomplishment of the study 55 children were filmed in four different games, of different kinds (exposed, transformed, and spontaneous). The classes` description and analysis were focused in the attitude axis and it was defined four topics for the discussion: Conflicts, Respect of rules, Expressiveness, and Competitiveness. The relationship between the individual with the game and its culture were pointed as the main characteristics in the configuration of the ludicrous activity atmosphere. It was also possible to observe specific situations of this relationship, once the games were limited to the social games (Piaget category), in a school atmosphere where children have students roles. Due to the obtained results, the study proposes a reflexive practice in which the students notice their own attitudes and try to adapt the game to their needs and not he other way around. In this perspective, the teacher has an important mediator roll, once he will be responsible to point out the students` difficulties and promote discussions in favor to provide teamwork.
Resumo:
The goal of this study was to examine the coupling between visual information and body sway with binocular and monocular vision at two distances from the front wall of a moving room. Ten participants stood as still as possible inside of a moving room facing the front wall in conditions that combined room movement with monocular/binocular vision and distance from the front wall (75 and 150cm). Visual information effect on body sway decreased with monocular vision and with increased distance from the front wall. In addition, the combination of monocular vision with the farther distance resulted in the smallest body sway response to the driving stimulus provided by the moving room. These results suggest that binocularvision near the front wall provides visual information of a better quality than the monocular vision far from the front wall. We discuss the results with respect to two modes of visual detection of body sway: ocular and extraocular. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Active control solutions appear to be a feasible approach to cope with the steadily increasing requirements for noise reduction in the transportation industry. Active controllers tend to be designed with a target on the sound pressure level reduction. However, the perceived control efficiency for the occupants can be more accurately assessed if psychoacoustic metrics can be taken into account. Therefore, this paper aims to evaluate, numerically and experimentally, the effect of a feedback controller on the sound quality of a vehicle mockup excited with engine noise. The proposed simulation scheme is described and experimentally validated. The engine excitation is provided by a sound quality equivalent engine simulator, running on a real-time platform that delivers harmonic excitation in function of the driving condition. The controller performance is evaluated in terms of specific loudness and roughness. It is shown that the use of a quite simple control strategy, such as a velocity feedback, can result in satisfactory loudness reduction with slightly spread roughness, improving the overall perception of the engine sound. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
With the relentless quest for improved performance driving ever tighter tolerances for manufacturing, machine tools are sometimes unable to meet the desired requirements. One option to improve the tolerances of machine tools is to compensate for their errors. Among all possible sources of machine tool error, thermally induced errors are, in general for newer machines, the most important. The present work demonstrates the evaluation and modelling of the behaviour of the thermal errors of a CNC cylindrical grinding machine during its warm-up period.
Resumo:
This paper aims to formulate and investigate the application of various nonlinear H(infinity) control methods to a fiee-floating space manipulator subject to parametric uncertainties and external disturbances. From a tutorial perspective, a model-based approach and adaptive procedures based on linear parametrization, neural networks and fuzzy systems are covered by this work. A comparative study is conducted based on experimental implementations performed with an actual underactuated fixed-base planar manipulator which is, following the DEM concept, dynamically equivalent to a free-floating space manipulator. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This keynote paper aims at analyzing relevant industrial demands for grinding research. The chosen focus is to understand what are the main research challenges in the extensive industrial use of the process. Since the automotive applications are the most important driving forces for grinding development, the paper starts with an analysis on the main trends in more efficient engines and the changes in their components that will affect the grinding performance. A view from 23 machine tool builders is also presented based on a survey made in interviews and during the EMO and IMTS machine tool shows. Case studies received by the STC G members were used to show how research centers and industries are collaborating. A view from the authors and the final conclusions show hot topics for future grinding research. (C) 2009 CIRP.
Resumo:
This paper presents the lifecycle assessment (LCA) of fuel ethanol, as 100% of the vehicle fuel, from sugarcane in Brazil. The functional unit is 10,000 km run in an urban area by a car with a 1,600-cm(3) engine running on fuel hydrated ethanol, and the resulting reference flow is 1,000 kg of ethanol. The product system includes agricultural and industrial activities, distribution, cogeneration of electricity and steam, ethanol use during car driving, and industrial by-products recycling to irrigate sugarcane fields. The use of sugarcane by the ethanol agribusiness is one of the foremost financial resources for the economy of the Brazilian rural area, which occupies extensive areas and provides far-reaching potentials for renewable fuel production. But, there are environmental impacts during the fuel ethanol lifecycle, which this paper intents to analyze, including addressing the main activities responsible for such impacts and indicating some suggestions to minimize the impacts. This study is classified as an applied quantitative research, and the technical procedure to achieve the exploratory goal is based on bibliographic revision, documental research, primary data collection, and study cases at sugarcane farms and fuel ethanol industries in the northeast of SA o pound Paulo State, Brazil. The methodological structure for this LCA study is in agreement with the International Standardization Organization, and the method used is the Environmental Design of Industrial Products. The lifecycle impact assessment (LCIA) covers the following emission-related impact categories: global warming, ozone formation, acidification, nutrient enrichment, ecotoxicity, and human toxicity. The results of the fuel ethanol LCI demonstrate that even though alcohol is considered a renewable fuel because it comes from biomass (sugarcane), it uses a high quantity and diversity of nonrenewable resources over its lifecycle. The input of renewable resources is also high mainly because of the water consumption in the industrial phases, due to the sugarcane washing process. During the lifecycle of alcohol, there is a surplus of electric energy due to the cogeneration activity. Another focus point is the quantity of emissions to the atmosphere and the diversity of the substances emitted. Harvesting is the unit process that contributes most to global warming. For photochemical ozone formation, harvesting is also the activity with the strongest contributions due to the burning in harvesting and the emissions from using diesel fuel. The acidification impact potential is mostly due to the NOx emitted by the combustion of ethanol during use, on account of the sulfuric acid use in the industrial process and because of the NOx emitted by the burning in harvesting. The main consequence of the intensive use of fertilizers to the field is the high nutrient enrichment impact potential associated with this activity. The main contributions to the ecotoxicity impact potential come from chemical applications during crop growth. The activity that presents the highest impact potential for human toxicity (HT) via air and via soil is harvesting. Via water, HT potential is high in harvesting due to lubricant use on the machines. The normalization results indicate that nutrient enrichment, acidification, and human toxicity via air and via water are the most significant impact potentials for the lifecycle of fuel ethanol. The fuel ethanol lifecycle contributes negatively to all the impact potentials analyzed: global warming, ozone formation, acidification, nutrient enrichment, ecotoxicity, and human toxicity. Concerning energy consumption, it consumes less energy than its own production largely because of the electricity cogeneration system, but this process is highly dependent on water. The main causes for the biggest impact potential indicated by the normalization is the nutrient application, the burning in harvesting and the use of diesel fuel. The recommendations for the ethanol lifecycle are: harvesting the sugarcane without burning; more environmentally benign agricultural practices; renewable fuel rather than diesel; not washing sugarcane and implementing water recycling systems during the industrial processing; and improving the system of gases emissions control during the use of ethanol in cars, mainly for NOx. Other studies on the fuel ethanol from sugarcane may analyze in more details the social aspects, the biodiversity, and the land use impact.
Resumo:
A thermodynamic approach to predict bulk glass-forming compositions in binary metallic systems was recently proposed. In this approach. the parameter gamma* = Delta H-amor/(Delta H-inter - Delta H-amor) indicates the glass-forming ability (GFA) from the standpoint of the driving force to form different competing phases, and Delta H-amor and Delta H-inter are the enthalpies for-lass and intermetallic formation, respectively. Good glass-forming compositions should have a large negative enthalpy for glass formation and a very small difference for intermetallic formation, thus making the glassy phase easily reachable even under low cooling rates. The gamma* parameter showed a good correlation with GFA experimental data in the Ni-Nb binary system. In this work, a simple extension of the gamma* parameter is applied in the ternary Al-Ni-Y system. The calculated gamma* isocontours in the ternary diagram are compared with experimental results of glass formation in that system. Despite sonic misfitting, the best glass formers are found quite close to the highest gamma* values, leading to the conclusion that this thermodynamic approach can lie extended to ternary systems, serving as a useful tool for the development of new glass-forming compositions. Finally the thermodynamic approach is compared with the topological instability criteria used to predict the thermal behavior of glassy Al alloys. (C) 2007 Elsevier B. V. All rights reserved.
Resumo:
Despite the frequent use of stepping motors in robotics, automation, and a variety of precision instruments, they can hardly be found in rotational viscometers. This paper proposes the use of a stepping motor to drive a conventional constant-shear-rate laboratory rotational viscometer to avoid the use of velocity sensor and gearbox and, thus, simplify the instrument design. To investigate this driving technique, a commercial rotating viscometer has been adapted to be driven by a bipolar stepping motor, which is controlled via a personal computer. Special circuitry has been added to microstep the stepping motor at selectable step sizes and to condition the torque signal. Tests have been carried out using the prototype to produce flow curves for two standard Newtonian fluids (920 and 12 560 mPa (.) s, both at 25 degrees C). The flow curves have been obtained by employing several distinct microstep sizes within the shear rate range of 50-500 s(-1). The results indicate the feasibility of the proposed driving technique.
Resumo:
High-angle grain boundary migration is predicted during geometric dynamic recrystallization (GDRX) by two types of mathematical models. Both models consider the driving pressure due to curvature and a sinusoidal driving pressure owing to subgrain walls connected to the grain boundary. One model is based on the finite difference solution of a kinetic equation, and the other, on a numerical technique in which the boundary is subdivided into linear segments. The models show that an initially flat boundary becomes serrated, with the peak and valley migrating into both adjacent grains, as observed during GDRX. When the sinusoidal driving pressure amplitude is smaller than 2 pi, the boundary stops migrating, reaching an equilibrium shape. Otherwise, when the amplitude is larger than 2 pi, equilibrium is never reached and the boundary migrates indefinitely, which would cause the protrusions of two serrated parallel boundaries to impinge on each other, creating smaller equiaxed grains.
Resumo:
The influence of Sri in Fe(2)O(3) thin films is addressed. The presence of the tin ions decreases the Fe(2)O(3) particle sizes and surface roughness decreasing of the films` surface is observed as a consequence. X-ray diffraction and atomic force microscopy measurements together with literature results support this phenomenon to be related to the segregation of the additive onto the surface and consequently surface energy decrease, which constitutes the driving force for the microstructure modification, similarly to results previously obtained for powders with same compositions. The effect of the anions introduced in the system as counter-ions of the precursors is also discussed.
Resumo:
This work describes the development of an engineering approach based upon a toughness scaling methodology incorporating the effects of weld strength mismatch on crack-tip driving forces. The approach adopts a nondimensional Weibull stress, (sigma) over bar (w), as a the near-tip driving force to correlate cleavage fracture across cracked weld configurations with different mismatch conditions even though the loading parameter (measured by J) may vary widely due to mismatch and constraint variations. Application of the procedure to predict the failure strain for an overmatch girth weld made of an API X80 pipeline steel demonstrates the effectiveness of the micromechanics approach. Overall, the results lend strong support to use a Weibull stress based procedure in defect assessments of structural welds.
The importance of the industrialization of Brazilian shale when faced with the world energy scenario
Resumo:
This article discusses the importance of the industrialization of Brazilian shale based on factors such as: security of the national energy system security, global oil geopoliticsl, resources available, production costs, oil prices, environmental impacts and the national oil reserves. The study shows that the industrialization of shale always arises when issues such as peak oil or its geopolitics appear as factors that raise the price of oil to unrealistic levels. The article concludes that in the Brazilian case, shale oil may be classified as a strategic resource, economically viable, currently in development by the success of the retorting technology for extraction of shale oil and the price of crude oil. The article presents the conclusion that shale may be the driving factor for the formation of a technology park in Sao Mateus do Sul, due to the city`s economic dependence on Petrosix.
Resumo:
Demands for optimal boiler performance and increased concerns in lowering emission have always been the driving force in the reevaluation and evolution of the Kraft boiler: specifically the air distribution strategies that are directly related to achieving increased residence time of flue gas combustion inside the furnace which in turn lowers atmosphere emission levels and enhances boiler operation. This paper presents the results of a study that analyzes the interaction of the different multilevel air injections have on flue gas flow patterns including various quaternary air supply arrangements. Additionally, this study assesses the performance of the CFD (Computational Fluid Dynamics) model against data available in literature. Simulations were performed considering isothermal and incompressible flows, and did not take into account thermal phenomena or chemical reactions. The numerical solutions generated proved to be coherently related to the data available in literature, and provided proof of the efficiency of tertiary level air injection, as well as revealed that quaternary air injection ports arranged in a symmetrical configuration is most suitable for optimal equipment operation. (C) 2010 Elsevier B.V. All rights reserved.