994 resultados para Doctorate of Medicine
Resumo:
Streptococcus pyogenes (group A streptococcus) is an important human pathogen, causing a wide array of infections ranging in severity. The majority of S. pyogenes infections are mild upper respiratory tract or skin infections. Severe, invasive infections, such as bacteraemia, are relatively rare, but constitute a major global burden with a high mortality. Certain streptococcal types are associated with a more severe disease and higher mortality. Bacterial, non-necrotizing cellulitis and erysipelas are localised infections of the skin, and although they are usually not life-threatening, they have a tendency to recur and therefore cause substantial morbidity. Despite several efforts aimed at developing an effective and safe vaccine against S. pyogenes infections, no vaccine is yet available. In this study, the epidemiology of invasive S. pyogenes infections in Finland was described over a decade of national, population-based surveillance. Recent trends in incidence, outcome and bacterial types were investigated. The beta-haemolytic streptococci causing cellulitis and erysipelas infections in Finland were studied in a case-control study. Bacterial isolates were characterised using both conventional and molecular typing methods, such as the emm typing, which is the most widely used typing method for beta-haemolytic streptococci. The incidence of invasive S. pyogenes disease has had an increasing trend during the past ten years in Finland, especially from 2006 onwards. Age- and sex-specific differences in the incidence rate were identified, with men having a higher incidence than women, especially among persons aged 45-64 years. In contrast, more infections occurred in women aged 25-34 years than men. Seasonal patterns with occasional peaks during the midsummer and midwinter were observed. Differences in the predisposing factors and underlying conditions of patients may contribute to these distinctions. Case fatality associated with invasive S. pyogenes infections peaked in 2005 (12%) but remained at a reasonably low level (8% overall during 2004-2007) compared to that of other developed countries (mostly exceeding 10%). Changes in the prevalent emm types were associated with the observed increases in incidence and case fatality. In the case-control study, acute bacterial non-necrotizing cellulitis was caused predominantly by Streptococcus dysgalactiae subsp. equisimilis, instead of S. pyogenes. The recurrent nature of cellulitis became evident. This study adds to our understanding of S. pyogenes infections in Finland and provides a basis for comparison to other countries and future trends. emm type surveillance and outcome analyses remain important for detecting such changes in type distribution that might lead to increases in incidence and case fatality. Bacterial characterisation serves as a basis for disease pathogenesis studies and vaccine development.
Resumo:
Colorectal cancer (CRC) is one of the most frequent malignancies in Western countries. Inherited factors have been suggested to be involved in 35% of CRCs. The hereditary CRC syndromes explain only ~6% of all CRCs, indicating that a large proportion of the inherited susceptibility is still unexplained. Much of the remaining genetic predisposition for CRC is probably due to undiscovered low-penetrance variations. This study was conducted to identify germline and somatic changes that contribute to CRC predisposition and tumorigenesis. MLH1 and MSH2, that underlie Hereditary non-polyposis colorectal cancer (HNPCC) are considered to be tumor suppressor genes; the first hit is inherited in the germline and somatic inactivation of the wild type allele is required for tumor initiation. In a recent study, frequent loss of the mutant allele in HNPCC tumors was detected and a new model, arguing against the two-hit hypothesis, was proposed for somatic HNPCC tumorigenesis. We tested this hypothesis by conducting LOH analysis on 25 colorectal HNPCC tumors with a known germline mutation in the MLH1 or MSH2 genes. LOH was detected in 56% of the tumors. All the losses targeted the wild type allele supporting the classical two-hit model for HNPCC tumorigenesis. The variants 3020insC, R702W and G908R in NOD2 predispose to Crohn s disease. Contribution of NOD2 to CRC predisposition has been examined in several case-control series, with conflicting results. We have previously shown that 3020insC does not predispose to CRC in Finnish CRC patients. To expand our previous study the variants R702W and G908R were genotyped in a population-based series of 1042 Finnish CRC patients and 508 healthy controls. Association analyses did not show significant evidence for association of the variants with CRC. Single nucleotide polymorphism (SNP) rs6983267 at chromosome 8q24 was the first CRC susceptibility variant identified through genome-wide association studies. To characterize the role of rs6983267 in CRC predisposition in the Finnish population, we genotyped the SNP in the case-control material of 1042 cases and 1012 controls and showed that G allele of rs6983267 is associated with the increased risk of CRC (OR 1.22; P=0.0018). Examination of allelic imbalance in the tumors heterozygous for rs6983267 revealed that copy number increase affected 22% of the tumors and interestingly, it favored the G allele. By utilizing a computer algorithm, Enhancer Element Locator (EEL), an evolutionary conserved regulatory motif containing rs6983267 was identified. The SNP affected the binding site of TCF4, a transcription factor that mediates Wnt signaling in cells, and has proven to be crucial in colorectal neoplasia. The preferential binding of TCF4 to the risk allele G was showed in vitro and in vivo. The element drove lacZ marker gene expression in mouse embryos in a pattern that is consistent with genes regulated by the Wnt signaling pathway. These results suggest that rs6983267 at 8q24 exerts its effect in CRC predisposition by regulating gene expression. The most obvious target gene for the enhancer element is MYC, residing ~335 kb downstream, however further studies are required to establish the transcriptional target(s) of the predicted enhancer element.
Resumo:
Transplantation of isolated islets from cadaver pancreas is a promising possibility for the optimal treatment of type 1 diabetes. The lack of islets is a major problem. Here we have investigated the possibility of generating islets in tissue culture of human pancreatic cells. We first reproduced a previously reported method of in vitro generation of endocrine cells from human adult pancreatic tissue. By tracing the bromodeoxyuridine-labeled cells in differentiated islet buds, we found that the pancreatic progenitor cells represented a subpopulation of cytokeratin 19 (CK19)-positive ductal cells. Serum-free medium and Matrigel overlay were essential for the endocrine differentiation. We then examined the involvement of preexisting islet cells in islet neogenesis. About 6-10% of endocrine cells dedifferentiated and acquired a transitional phenotype by coexpressing CK19. Significant cell proliferation was only observed in CK19-positive cells, but not in chromogranin A-positive endocrine cells. The in vitro-derived human islets were morphologically and functionally immature when compared with normal islets. Their insulin mRNA levels were only 4-5% of that found in fresh human islets, and glucose-stimulated insulin release was 3 times lower than that of control islets. Moreover, some immature endocrine cells coexpressed insulin and glucagon. After transplantation in nude mice, the in vitro-generated islets became mature with one type of hormone per endocrine cell. In addition, we also found that also in both fresh islet transplants many cells coexpressed endocrine markers and ductal marker CK19 as a sign of ductal to endocrine cell transition. Finally, we studied the effects of clinically used immunosuppressive drugs on precursor cell proliferation and differentiation. Mycophenolate mofetil (MMF) severely hampered duct-cell proliferation, and significantly reduced the total DNA content indicating its antiproliferative effect on the precursors. Tacrolimus mainly affected differentiated beta cells by decreasing the insulin content per DNA as well as the proportion of insulin-positive cells. Sirolimus and daclizumab did not show any individual or synergistic side effects suggesting that these drugs are amenable for use in clinical islet transplantation. In summary, we confirm the capacity of endocrine differentiation from progenitors present in the adult human pancreas. The plasticity of differentiated cell types of human pancreas may be a potential mechanism of human pancreas regeneration. Ductal cell differentiation into endocrine cells in transplanted islets may be an important factor in sustaining the long-term function of islet transplants. The immunosuppressive protocol is likely to be an important determinant of long-term clinical islet graft function. Moreover, these results provide new information on the mechanisms of pancreatic islet regeneration and provide the basis for the development of new strategies for the treatment of insulin deficient diabetes mellitus.
Resumo:
In complement activation, Factor H (FH) and C4b-binding protein (C4bp) are the key regulators that prevent the complement cascade from attacking host tissues. Some bacteria may bind and deposit these regulators on their own surfaces and thus provide themselves with an efficient means to avoid complement activation. In consequence, bacteria resist complement-mediated lysis and opsonin-dependent phagocytosis. This study has demonstrated that Y. enterocolitica, similar to many other pathogens, recruits both FH and C4bp to its surface to ensure protection against the complement-mediated killing. YadA and Ail, the most crucial serum resistance factors of Y.enterocolitica, mediate the binding of FH and C4bp. FH - YadA interaction involves multiple higher structural motifs on the YadA stalk and the short consensus repeats (SCRs) of the entire polypeptide chain of FH. The Ail binding site on FH has been located to SCRs 6 and 7. The binding site for FH on Ail, however, remains undetermined. Both YadA- and Ail-bound regulators display full cofactor activity for FI-mediated cleavage of C3b/C4b. FH/C4bp-binding characteristics do, however, differ between YadA and Ail. In addition, Ail captures the regulators only in the absence of blocking lipopolysaccharide O-antigen and outer core, whereas YadA binds FH/C4bp independent of the presence of other surface factors Independent of mode of binding, however, YadA and Ail provide Y. enterocolitica a means to avoid complement-mediated lysis, enhancing chances for the bacteria to survive in the host during various phases of infection.
Resumo:
Schizophrenia, affecting about 1% of population worldwide, is a severe mental disorder characterized by positive and negative symptoms, such as psychosis and anhedonia, as well as cognitive deficits. At present, schizophrenia is considered a complex disorder of neurodevelopmental origin with both genetic and environmental factors contributing to its onset. Although a number of candidate genes for schizophrenia have been highlighted, only very few schizophrenia patients are likely to share identical genetic liability. This study is based on the nation-wide schizophrenia family sample of the National Institute for Health and Welfare, and represents one of the largest and most well-characterized familial series in the world. In the first part of this study, we investigated the roles of the DTNBP1, NRG1, and AKT1 genes in the background of schizophrenia in Finland. Although these genes are associated with schizophrenia liability in several populations, any significant association with clinical diagnostic information of schizophrenia remained absent in our sample of 441 schizophrenia families. In the second part of this study, we first replicated schizophrenia linkage on the long arm of chromosome 7 in 352 schizophrenia families. In the following association analysis, we utilized additional clinical disorder features and intermediate phenotypes – endophenotypes - in addition to diagnostic information from altogether 290 neuropsychologically assessed schizophrenia families. An intragenic short tandem repeat allele of the regional RELN gene, supposed to play a role in the background of several neurodevelopmental disorders, showed significant association with poorer cognitive functioning and more severe schizophrenia symptoms. Additionally, this risk allele was significantly more prevalent among the individuals affected with schizophrenia spectrum disorders. We have previously identified linkage of schizophrenia and its cognitive endophenotypes on the long arms of chromosomes 2, 4, and 5. In the last part of this study, we selected altogether 104 functionally relevant candidate genes from the linked regions. We detected several promising associations, of which especially interesting are the ERBB4 gene, showing association with the severity of schizophrenia symptoms and impairments in traits related to verbal abilities, and the GRIA1 gene, showing association with the severity of schizophrenia symptoms. Our results extend the previous evidence that the genetic risk for schizophrenia is at least partially mediated via the effects of the candidate genes and their combinations on relevant brain systems, resulting in alterations in different disorder domains, such as the cognitive deficits.
Resumo:
The kidney filtration barrier consists of fenestrated endothelial cell layer, glomerular basement membrane and slit diaphragm (SD), the specialized junction between glomerular viscelar epithelial cells (podocytes). Podocyte injury is associated with the development of proteinuria, and if not reversed the injury will lead to permanent deterioration of the glomerular filter. The early events are characterized by disruption of the integrity of the SD, but the molecular pathways involved are not fully understood. Congenital nephrotic syndrome of the Finnish type (CNF) is caused by mutations in NPHS1, the gene encoding the SD protein nephrin. Lack of nephrin results in loss of the SD and massive proteinuria beginning before birth. Furthermore, nephrin expression is decreased in acquired human kidney diseases including diabetic nephropathy. This highlights the importance of nephrin and consequently SD in regulating the kidney filtration function. However, the precise molecular mechanism of how nephrin is involved in the formation of the SD is unknown. This thesis work aimed at clarifying the role of nephrin and its interaction partners in the formation of the SD. The purpose was to identify novel proteins that associate with nephrin in order to define the essential molecular complex required for the establishment of the SD. The aim was also to decipher the role of novel nephrin interacting proteins in podocytes. Nephrin binds to nephrin-like proteins Neph1 and Neph2, and to adherens junction protein P-cadherin. These interactions have been suggested to play a role in the formation of the SD. In this thesis work, we identified densin as a novel interaction partner for nephrin. Densin was localized to the SD and it was shown to bind to adherens junction protein beta-catenin. Furthermore, densin was shown to behave in a similar fashion as adherens junction proteins in cell-cell contacts. These results indicate that densin may play a role in cell adhesion and, therefore, may contribute to the formation of the SD together with nephrin and adherens junction proteins. Nephrin was also shown to bind to Neph3, which has been previously localized to the SD. Neph3 and Neph1 were shown to induce cell adhesion alone, whereas nephrin needed to trans-interact with Neph1 or Neph3 from the opposite cell surface in order to make cell-cell contacts. This was associated with the decreased tyrosine phosphorylation of nephrin. These data extend the current knowledge of the molecular composition of the nephrin protein complex at the SD and also provide novel insights of how the SD may be formed. This thesis work also showed that densin was up-regulated in the podocytes of CNF patients. Neph3 was up-regulated in nephrin deficient mouse kidneys, which share similar podocyte alterations and lack of the SD as observed in CNF patients podocytes. These data suggest that densin and Neph3 may have a role in the formation of morphological alterations in podocytes detected in CNF patients. Furthermore, this thesis work showed that deletion of beta-catenin specifically from adult mouse podocytes protected the mice from the development of adriamycin-induced podocyte injury and proteinuria compared to wild-type mice. These results show that beta-catenin play a role in the adriamycin induced podocyte injury. Podocyte injury is a hallmark in many kidney diseases and the changes observed in the podocytes of CNF patient share characteristics with injured podocytes observed in chronic kidney diseases. Therefore, the results obtained in this thesis work suggest that densin, Neph3 and beta-catenin participate in the molecular pathways which result in morphological alterations commonly detected in injured podocytes in kidney diseases.
Resumo:
Schizophrenia is a severe psychotic disorder affecting 0.5-1 % of the population. The disorder is characterized by hallucinations; delusions; disorganized behavior and speech; avolition; anhedonia; flattened affect and cognitive deficits. The etiology of the disorder is complex with evidence for multiple genes contributing to the onset of the disorder along with environmental factors. DISC1 is one of the most promising candidate genes for schizophrenia. It codes for a protein which takes part in numerous molecular interactions along several pathways. This network, termed as the DISC1 pathway, is evidently important for the development and maturation of the central nervous system from the embryo until young adulthood. Disruption at these pathways is thought to predispose schizophrenia. In the present study, we have studied the DISC1 pathway in the etiology of schizophrenia in the Finnish population. We have utilized large Finnish samples; the schizophrenia family sample where DISC1 was originally shown to associate with schizophrenia and the Northern Finland birth cohort 1966 (NFBC66). Several DISC1 binding partners displayed evidence for association in the family sample along with DISC1. Through a genome-wide linkage study, we found a significant linkage signal to a locus where a DISC1 binding partner NDE1 is located at the carriers of a certain DISC1 risk variant. In a follow-up study, genetic markers in NDE1 displayed significant evidence for association with schizophrenia. Further exploration of association between 11 genes of the DISC1 pathway and schizophrenia led to recognition of novel variants in NDEL1, PDE4B and PDE4D that significantly either increased or decreased the risk for schizophrenia. Further, we found evidence that DISC1 itself has a significant role in the human mental functioning even in the healthy population. Variants in DISC1 had a significant effect on anhedonia which is a trait present at everybody but is in its severe form one of the main symptoms of schizophrenia and correlates with the risk of developing the disorder. Further, utilizing genome-wide marker data, we recognized three genes; MIR620; CCDC141 and LCT; that are closely related to the DISC1 pathway but which effects on anhedonia were observable only at the individuals who carried these specific DISC1 variants. Our findings significantly add up to the previous evidence for the involvement of DISC1 and the DISC1 pathway in the etiology of schizophrenia and psychosis. Our results support the concept of a number of DISC1 pathway related genes contributing in the etiology of schizophrenia along with DISC1 and provide new candidates for the studies of schizophrenia. Our findings also significantly increase the importance of DISC1 itself as having a role in psychological functioning in the general population.
Resumo:
End-stage renal disease is an increasingly common pathologic condition, with a current incidence of 87 per million inhabitants in Finland. It is the end point of various nephropathies, most common of which is the diabetic nephropathy. This thesis focuses on exploring the role of nephrin in the pathogenesis of diabetic nephropathy. Nephrin is a protein of the glomerular epithelial cell, or podocyte, and it appears to have a crucial function as a component of the filtration slit diaphragm in the kidney glomeruli. Mutations in the nephrin gene NPHS1 lead to massive proteinuria. Along with the originally described location in the podocyte, nephrin has now been found to be expressed in the brain, testis, placenta and pancreatic beta cells. In type 1 diabetes, the fundamental pathologic event is the autoimmune destruction of the beta cells. Autoantibodies against various beta cell antigens are generated during this process. Due to the location of nephrin in the beta cell, we hypothesized that patients with type 1 diabetes may present with nephrin autoantibodies. We also wanted to test whether such autoantibodies could be involved in the pathogenesis of diabetic nephropathy. The puromycin aminonucleoside nephrosis model in the rat, the streptozotocin model in the rat, and the non-obese diabetic mice were studied by immunochemical techniques, in situ -hybridization and the polymerase chain reaction -based methods to resolve the expression of nephrin mRNA and protein in experimental nephropathies. To test the effect of antiproteinuric therapies, streptozotocin-treated rats were also treated with aminoguanidine or perindopril. To detect nephrin antibodies we developed a radioimmunoprecipitation assay and analyzed follow-up material of 66 patients with type 1 diabetes. In the puromycin aminonucleoside nephrosis model, the nephrin expression level was uniformly decreased together with the appearance of proteinuria. In the streptozotocin-treated rats and in non-obese diabetic mice, the nephrin mRNA and protein expression levels were seen to increase in the early stages of nephropathy. However, as observed in the streptozotocin rats, in prolonged diabetic nephropathy the expression level decreased. We also found out that treatment with perindopril could not only prevent proteinuria but also a decrease in nephrin expression in streptozotocin-treated rats. Aminoguanidine did not have an effect on nephrin expression, although it could attenuate the proteinuria. Circulating antibodies to nephrin in patients with type 1 diabetes were found, although there was no correlation with the development of diabetic nephropathy. At diagnosis, 24% of the patients had these antibodies, while at 2, 5 and 10 years of disease duration the respective proportions were 23%, 14% and 18%. During the total follow-up of 16 to 19 years after diagnosis of diabetes, 14 patients had signs of nephropathy and 29% of them tested positive for nephrin autoantibodies in at least one sample. In conclusion, this thesis work could show changes of nephrin expression along with the development of proteinuria. The autoantibodies against nephrin are likely generated in the autoimmune process leading to type 1 diabetes. However, according to the present work it is unlikely that these autoantibodies are contributing significantly to the development of diabetic nephropathy.
Resumo:
Virotherapy, the use of oncolytic properties of viruses for eradication of tumor cells, is an attractive strategy for treating cancers resistant to traditional modalities. Adenoviruses can be genetically modified to selectively replicate in and destroy tumor cells through exploitation of molecular differences between normal and cancer cells. The lytic life cycle of adenoviruses results in oncolysis of infected cells and spreading of virus progeny to surrounding cells. In this study, we evaluated different strategies for improving safety and efficacy of oncolytic virotherapy against human ovarian adenocarcinoma. We examined the antitumor efficacy of Ad5/3-Δ24, a serotype 3 receptor-targeted pRb-p16 pathway-selective oncolytic adenovirus, in combination with conventional chemotherapeutic agents. We observed synergistic activity in ovarian cancer cells when Ad5/3-Δ24 was given with either gemcitabine or epirubicin, common second-line treatment options for ovarian cancer. Our results also indicate that gemcitabine reduces the initial rate of Ad5/3-Δ24 replication without affecting the total amount of virus produced. In an orthotopic murine model of peritoneally disseminated ovarian cancer, combining Ad5/3-Δ24 with either gemcitabine or epirubicin resulted in greater therapeutic benefit than either agent alone. Another useful approach for increasing the efficacy of oncolytic agents is to arm viruses with therapeutic transgenes such as genes encoding prodrug-converting enzymes. We constructed Ad5/3-Δ24-TK-GFP, an oncolytic adenovirus encoding the thymidine kinase (TK) green fluorescent protein (GFP) fusion protein. This novel virus replicated efficiently on ovarian cancer cells, which correlated with increased GFP expression. Delivery of prodrug ganciclovir (GCV) immediately after infection abrogated viral replication, which might have utility as a safety switch mechanism. Oncolytic potency in vitro was enhanced by GCV in one cell line, and the interaction was not dependent on scheduling of the treatments. However, in murine models of metastatic ovarian cancer, administration of GCV did not add therapeutic benefit to this highly potent oncolytic agent. Detection of tumor progression and virus replication with bioluminescence and fluorescence imaging provided insight into the in vivo kinetics of oncolysis in living mice. For optimizing protocols for upcoming clinical trials, we utilized orthotopic murine models of ovarian cancer to analyze the effect of dose and scheduling of intraperitoneally delivered Ad5/3-Δ24. Weekly administration of Ad5/3-Δ24 did not significantly enhance antitumor efficacy over a single treatment. Our results also demonstrate that even a single intraperitoneal injection of only 100 viral particles significantly increased the survival of mice compared with untreated animals. Improved knowledge of adenovirus biology has resulted in creation of more effective oncolytic agents. However, with more potent therapy regimens an increase in unwanted side-effects is also possible. Therefore, inhibiting viral replication when necessary would be beneficial. We evaluated the antiviral activity of chlorpromazine and apigenin on adenovirus replication and associated toxicity in fresh human liver samples, normal cells, and ovarian cancer cells. Further, human xenografts in mice were utilized to evaluate antitumor efficacy, viral replication, and liver toxicity. Our data suggest that these agents can reduce replication of adenoviruses, which could provide a safety switch in case of replication-associated side-effects. In conclusion, we demonstrate that Ad5/3-Δ24 is a useful oncolytic agent for treatment of ovarian cancer either alone or in combination with conventional chemotherapeutic drugs. Insertion of genes encoding prodrug-converting enzymes into the genome of Ad5/3-Δ24 might not lead to enhanced antitumor efficacy with this highly potent oncolytic virus. As a safety feature, viral activity can be inhibited with pharmacological substances. Clinical trials are however needed to confirm if these preclinical results can be translated into efficacy in humans. Promising safety data seen here, and in previous publications suggest that clinical evaluation of the agent is feasible.