938 resultados para Discrete polynomial transforms
Resumo:
We analyze simultaneous discrete public good games wi.th incomplete information and continuous contributions. To use the terminology of Admati and Perry (1991). we consider comribution and subscription games. In the former. comrioutions are :1ot rcfunded if the project is not completed. while in thp. iatter they are. For the special case whp.re provision by a single player is possible we show the existence of an equilibrium in Doth cootribution and subscription games where a player decides to provide the good by himself. For the case where is not feasible for a single player to provide the good by himself, we show that any equilibriwn of both games is inefficient. WE also provide a sufficient condition for "contributing zero" to be the unique equilibrium of the contribution garoe with n players and characterize e
Resumo:
We analyze simultaneous discrete public good games with incomplete information and continuous contributions. To use the tenninology of Admati and Perry (1991), we consider contribution and subscription games. In the former, contributions are not refunded ifthe project is not completed, while in the latter they are. For the special case where provision by a single player is possible we show the existence of an equihbrium in both contnbution and subscription games where a player decides to provide the good by himself. For the case where is not feasible for a single player to provide the good by himself: we show that there exist equilibria of the subscription game where each participant pays the same amount. Moreover, using the technical apparatus from Myerson (1981) we show that neither the subscription nor the contribution games admit ex-post eÁ cient equibbria. hl addition. we provide a suÁ cient condition for êontributing zero 'to be the unique equihbrium of the contnbution game with n players.
Resumo:
Este trabalho visa comparar, estatisticamente, o desempenho de duas estratégias de imunização de carteiras de renda fixa, que são recalibradas periodicamente. A primeira estratégia, duração, considera alterações no nível da estrutura a termo da taxa de juros brasileira, enquanto a abordagem alternativa tem como objetivo imunizar o portfólio contra oscilações em nível, inclinação e curvatura. Primeiro, estimamos a curva de juros a partir do modelo polinomial de Nelson & Siegel (1987) e Diebold & Li (2006). Segundo, imunizamos a carteira de renda fixa adotando o conceito de construção de hedge de Litterman & Scheinkman (1991), porém assumindo que as taxas de juros não são observadas. O portfólio imunizado pela estratégia alternativa apresenta empiricamente um desempenho estatisticamente superior ao procedimento de duração. Mostramos também que a frequência ótima de recalibragem é mensal na análise empírica.
Resumo:
Economists and policymakers have long been concerned with increasing the supply of health professionals in rural and remote areas. This work seeks to understand which factors influence physicians’ choice of practice location right after completing residency. Differently from previous papers, we analyse the Brazilian missalocation and assess the particularities of developing countries. We use a discrete choice model approach with a multinomial logit specification. Two rich databases are employed containing the location and wage of formally employed physicians as well as details from their post-graduation. Our main findings are that amenities matter, physicians have a strong tendency to remain in the region they completed residency and salaries are significant in the choice of urban, but not rural, communities. We conjecture this is due to attachments built during training and infrastructure concerns.
Resumo:
When estimating policy parameters, also known as treatment effects, the assignment to treatment mechanism almost always causes endogeneity and thus bias many of these policy parameters estimates. Additionally, heterogeneity in program impacts is more likely to be the norm than the exception for most social programs. In situations where these issues are present, the Marginal Treatment Effect (MTE) parameter estimation makes use of an instrument to avoid assignment bias and simultaneously to account for heterogeneous effects throughout individuals. Although this parameter is point identified in the literature, the assumptions required for identification may be strong. Given that, we use weaker assumptions in order to partially identify the MTE, i.e. to stablish a methodology for MTE bounds estimation, implementing it computationally and showing results from Monte Carlo simulations. The partial identification we perfom requires the MTE to be a monotone function over the propensity score, which is a reasonable assumption on several economics' examples, and the simulation results shows it is possible to get informative even in restricted cases where point identification is lost. Additionally, in situations where estimated bounds are not informative and the traditional point identification is lost, we suggest a more generic method to point estimate MTE using the Moore-Penrose Pseudo-Invese Matrix, achieving better results than traditional methods.
Resumo:
Image compress consists in represent by small amount of data, without loss a visual quality. Data compression is important when large images are used, for example satellite image. Full color digital images typically use 24 bits to specify the color of each pixel of the Images with 8 bits for each of the primary components, red, green and blue (RGB). Compress an image with three or more bands (multispectral) is fundamental to reduce the transmission time, process time and record time. Because many applications need images, that compression image data is important: medical image, satellite image, sensor etc. In this work a new compression color images method is proposed. This method is based in measure of information of each band. This technique is called by Self-Adaptive Compression (S.A.C.) and each band of image is compressed with a different threshold, for preserve information with better result. SAC do a large compression in large redundancy bands, that is, lower information and soft compression to bands with bigger amount of information. Two image transforms are used in this technique: Discrete Cosine Transform (DCT) and Principal Component Analysis (PCA). Primary step is convert data to new bands without relationship, with PCA. Later Apply DCT in each band. Data Loss is doing when a threshold discarding any coefficients. This threshold is calculated with two elements: PCA result and a parameter user. Parameters user define a compression tax. The system produce three different thresholds, one to each band of image, that is proportional of amount information. For image reconstruction is realized DCT and PCA inverse. SAC was compared with JPEG (Joint Photographic Experts Group) standard and YIQ compression and better results are obtain, in MSE (Mean Square Root). Tests shown that SAC has better quality in hard compressions. With two advantages: (a) like is adaptive is sensible to image type, that is, presents good results to divers images kinds (synthetic, landscapes, people etc., and, (b) it need only one parameters user, that is, just letter human intervention is required
Resumo:
This work presents a modelling and identification method for a wheeled mobile robot, including the actuator dynamics. Instead of the classic modelling approach, where the robot position coordinates (x,y) are utilized as state variables (resulting in a non linear model), the proposed discrete model is based on the travelled distance increment Delta_l. Thus, the resulting model is linear and time invariant and it can be identified through classical methods such as Recursive Least Mean Squares. This approach has a problem: Delta_l can not be directly measured. In this paper, this problem is solved using an estimate of Delta_l based on a second order polynomial approximation. Experimental data were colected and the proposed method was used to identify the model of a real robot
Resumo:
In this work are studied periodic perturbations, depending on two parameters, of planar polynomial vector fields having an annulus of large amplitude periodic orbits, which accumulate on a symmetric infinite heteroclinic cycle. Such periodic orbits and the heteroclinic trajectory can be seen only by the global consideration of the polynomial vector fields on the whole plane, and not by their restriction to any compact set. The global study involving infinity is performed via the Poincare Compactification. It is shown that, for certain types of periodic perturbations, one can seek, in a neighborhood of the origin in the parameter plane, curves C-(m) of subharmonic bifurcations, for which the periodically perturbed system has subharmonics of order m, for any integer m.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Wavelet functions have been used as the activation function in feedforward neural networks. An abundance of R&D has been produced on wavelet neural network area. Some successful algorithms and applications in wavelet neural network have been developed and reported in the literature. However, most of the aforementioned reports impose many restrictions in the classical backpropagation algorithm, such as low dimensionality, tensor product of wavelets, parameters initialization, and, in general, the output is one dimensional, etc. In order to remove some of these restrictions, a family of polynomial wavelets generated from powers of sigmoid functions is presented. We described how a multidimensional wavelet neural networks based on these functions can be constructed, trained and applied in pattern recognition tasks. As an example of application for the method proposed, it is studied the exclusive-or (XOR) problem.
Resumo:
In this paper, we described how a multidimensional wavelet neural networks based on Polynomial Powers of Sigmoid (PPS) can be constructed, trained and applied in image processing tasks. In this sense, a novel and uniform framework for face verification is presented. The framework is based on a family of PPS wavelets,generated from linear combination of the sigmoid functions, and can be considered appearance based in that features are extracted from the face image. The feature vectors are then subjected to subspace projection of PPS-wavelet. The design of PPS-wavelet neural networks is also discussed, which is seldom reported in the literature. The Stirling Universitys face database were used to generate the results. Our method has achieved 92 % of correct detection and 5 % of false detection rate on the database.