871 resultados para Directional Lanes.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Supra molecular architectures of coordination complexes of liydrazones through non covalent interactions have been explored. Molecular self—assernbly driven by weak interactions such as hydrogen— bonding, K '”T[, C-1-I‘ "TE, van der Waals interactions, and so forth are currently of tremendous research interest in the fields of molecule based materials. The directional properties of the hydrogembonding interaction associate discrete molecules into aggregate structures that are sufficiently stable to be considered as independent chemical species. Chemistry can borrow nature’s strategy to utilize hydrogen-bonding as Well as other noncovalent interactions as found in secondary and tertiary structures of proteins such as the double helix folding of DNA, hydrophobic selflorganization of phospholipids in cell membrane etc. In supramolecular chemistry hydrogen bonding plays an important role in forming a variety of architectures. Thus, the wise modulation and tuning of the complementary sites responsible for hydrogen—bond formation have led to its application in supramolecular electronics, host-guest chemistry, self-assembly of molecular capsules, nanotubes etc. The work presented in this thesis describes the synthesis and characterization of metal complexes derived from some substituted aroylhydrazones. The thesis is divided into seven chapters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antennas play an important role in determining the characteristics of any electronic system which depends on free space as the propagation medium. Basically, an antenna can be considered as the connecting link between free space and the transmitter or receiver. For radar and navigational purposes the directional properties of an antenna is its most basic requirement as it determines the distribution of radiated energy. Hence the study of directional properties of antennas has got special significance and several useful applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Light in its physical and philosophical sense has captured the imagination of human mind right from the dawn of civilization. The invention of lasers in the 60’s caused a renaissance in the field of optics. This intense, monochromatic, highly directional radiation created new frontiers in science and technology. The strong oscillating electric field of laser radiation creates a. polarisation response that is nonlinear in character in the medium through which it passes and the medium acts as a new source of optical field with alternate properties. It was in this context, that the field of optoelectronics which encompasses the generation, modulation, transmission etc. of optical radiation has gained tremendous importance. Organic molecules and polymeric systems have emerged as a class of promising materials of optoelectronics because they offer the flexibility, both at the molecular and bulk levels, to optimize the nonlinearity and other suitable properties for device applications. Organic nonlinear optical media, which yield large third-order nonlinearities, have been widely studied to develop optical devices like high speed switches, optical limiters etc. Transparent polymeric materials have found one of their most promising applicationsin lasers, in which they can be used as active elements with suitable laser dyes doped in it. The solid-matrix dye lasers make possible combination of the advantages of solid state lasers with the possibility of tuning the radiation over a broad spectral range. The polymeric matrices impregnated with organic dyes have not yet widely used because of the low resistance of the polymeric matrices to laser damage, their low dye photostability, and low dye stability over longer time of operation and storage. In this thesis we investigate the nonlinear and radiative properties of certain organic materials and doped polymeric matrix and their possible role in device development

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the recent progress and rapid increase in the field of communication, the designs of antennas for small mobile terminals with enhanced radiation characteristics are acquiring great importance. Compactness, efficiency, high data rate capacity etc. are the major criteria for the new generation antennas. The challenging task of the microwave scientists and engineers is to design a compact printed radiating structure having broadband behavior along with good efficiency and enhanced gain. Printed antenna technology has received popularity among antenna scientists after the introduction of planar transmission lines in mid-seventies. When we view the antenna through a transmission line concept, the mechanism behind any electromagnetic radiator is quite simple and interesting. Any electromagnetic system with a discontinuity is radiating electromagnetic energy. The size, shape and orientation of the discontinuities control the radiation characteristics of the system such as radiation pattern, gain, polarization etc. It can be either resonant or non-resonant. This thesis deals with antennas that are developed from a class of transmission lines known as coplanar strip-CPS, a planar analogy of parallel pair transmission line. The specialty of CPS is its symmetric structure compared to other transmission lines, which makes the antenna structures developed from CPS quite simple for design and fabrication. The structural modifications on either metallic strip of CPS results in different antennas. The first part of the thesis discusses a single band and dual band design derived from open ended slot lines which are very much suitable for 2.4 and 5.2 GHz WLAN applications. The second section of the study is vectored into the development of enhanced gain dipoles. A single band dipole and a wide band enhanced gain dipole suitable for 5.2/5.8 GHZ band and imaging applications are developed and discussed. Last part of the thesis discusses the development of directional UWBs. Three different types of ultra-compact UWBs are developed and almost all the frequency domain and time domain analysis of the structures are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose a handwritten character recognition system for Malayalam language. The feature extraction phase consists of gradient and curvature calculation and dimensionality reduction using Principal Component Analysis. Directional information from the arc tangent of gradient is used as gradient feature. Strength of gradient in curvature direction is used as the curvature feature. The proposed system uses a combination of gradient and curvature feature in reduced dimension as the feature vector. For classification, discriminative power of Support Vector Machine (SVM) is evaluated. The results reveal that SVM with Radial Basis Function (RBF) kernel yield the best performance with 96.28% and 97.96% of accuracy in two different datasets. This is the highest accuracy ever reported on these datasets

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a writer identification scheme for Malayalam documents. As the accomplishment rate of a scheme is highly dependent on the features extracted from the documents, the process of feature selection and extraction is highly relevant. The paper describes a set of novel features exclusively for Malayalam language. The features were studied in detail which resulted in a comparative study of all the features. The features are fused to form the feature vector or knowledge vector. This knowledge vector is then used in all the phases of the writer identification scheme. The scheme has been tested on a test bed of 280 writers of which 50 writers having only one page, 215 writers with at least 2 pages and 15 writers with at least 4 pages. To perform a comparative evaluation of the scheme the test is conducted using WD-LBP method also. A recognition rate of around 95% was obtained for the proposed approach

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a new directionally adaptive, learning based, single image super resolution method using multiple direction wavelet transform, called Directionlets is presented. This method uses directionlets to effectively capture directional features and to extract edge information along different directions of a set of available high resolution images .This information is used as the training set for super resolving a low resolution input image and the Directionlet coefficients at finer scales of its high-resolution image are learned locally from this training set and the inverse Directionlet transform recovers the super-resolved high resolution image. The simulation results showed that the proposed approach outperforms standard interpolation techniques like Cubic spline interpolation as well as standard Wavelet-based learning, both visually and in terms of the mean squared error (mse) values. This method gives good result with aliased images also.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fingerprint based authentication systems are one of the cost-effective biometric authentication techniques employed for personal identification. As the data base population increases, fast identification/recognition algorithms are required with high accuracy. Accuracy can be increased using multimodal evidences collected by multiple biometric traits. In this work, consecutive fingerprint images are taken, global singularities are located using directional field strength and their local orientation vector is formulated with respect to the base line of the finger. Feature level fusion is carried out and a 32 element feature template is obtained. A matching score is formulated for the identification and 100% accuracy was obtained for a database of 300 persons. The polygonal feature vector helps to reduce the size of the feature database from the present 70-100 minutiae features to just 32 features and also a lower matching threshold can be fixed compared to single finger based identification

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The standard separable two dimensional wavelet transform has achieved a great success in image denoising applications due to its sparse representation of images. However it fails to capture efficiently the anisotropic geometric structures like edges and contours in images as they intersect too many wavelet basis functions and lead to a non-sparse representation. In this paper a novel de-noising scheme based on multi directional and anisotropic wavelet transform called directionlet is presented. The image denoising in wavelet domain has been extended to the directionlet domain to make the image features to concentrate on fewer coefficients so that more effective thresholding is possible. The image is first segmented and the dominant direction of each segment is identified to make a directional map. Then according to the directional map, the directionlet transform is taken along the dominant direction of the selected segment. The decomposed images with directional energy are used for scale dependent subband adaptive optimal threshold computation based on SURE risk. This threshold is then applied to the sub-bands except the LLL subband. The threshold corrected sub-bands with the unprocessed first sub-band (LLL) are given as input to the inverse directionlet algorithm for getting the de-noised image. Experimental results show that the proposed method outperforms the standard wavelet-based denoising methods in terms of numeric and visual quality

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Futures trading in Commodities has three specific economic functions viz. price discovery, hedging and reduction in volatility. Natural rubber possesses all the specifications required for futures trading. Commodity futures trading in India attained momentum after the starting of national level commodity exchanges in 2003. The success of futures trading depends upon effective price risk management, price discovery and reduced volatility which in turn depends upon the volume of trading. In the case of rubber futures market, the volume of trading depends upon the extent of participation by market players like growers, dealers, manufacturers, rubber marketing co-operative societies and Rubber Producer’s Societies (RPS). The extent of participation by market players has a direct bearing on their awareness level and their perception about futures trading. In the light of the above facts and the review of literature available on rubber futures market, it is felt that a study on rubber futures market is necessary to fill the research gap, with specific focus on (1) the awareness and perception of rubber futures market participants viz. (i) rubber growers, (ii) dealers, (iii) rubber product manufacturers, (iv) rubber marketing co-operative societies and Rubber Producer’s Societies (RPS) about futures trading and (2) whether the rubber futures market is fulfilling the economic functions of futures market viz. hedging, reduction in volatility and price discovery or not. The study is confined to growers, dealers, rubber goods manufacturers, rubber marketing co-operative societies and RPS in Kerala. In order to achieve the stated objectives, the study utilized secondary data for the period from 2003 to 2013 from different published sources like bulletins, newsletters, circulars from NMCE, Reserve Bank of India (RBI), Warehousing Corporation and traders. The primary data required for this study were collected from rubber growers, rubber dealers, RPS & Rubber Marketing Co-operative Societies and rubber goods manufacturers in Kerala. Data pertaining to the awareness and perception of futures trading, participation in the futures trading, use of spot and futures prices and source of price information by dealers, farmers, manufacturers and cooperative societies also were collected. Statistical tools used for analysis include percentage, standard deviation, Chi-square test, Mann – Whitney U test, Kruskal Wallis test, Augmented Dickey – Fuller test statistic, t- statistic, Granger causality test, F- statistic, Johansen co – integration test, Trace statistic and Max –Eigen statistic. The study found that 71.5 per cent of the total hedges are effective and 28.5 per cent are ineffective for the period under study. It implies that futures market in rubber reduced the impact of price risks by approximately 71.5 per cent. Further, it is observed that, on 54.4 per cent occasions, the futures market exercised a stabilizing effect on the spot market, and on 45.6 per cent occasions futures trading exercised a destabilizing effect on the spot market. It implies that elasticity of expectation of futures market in rubber has a predominant stabilizing effect on spot prices. The market, as a whole, exhibits a bias in favour of long hedges. Spot price volatility of rubber during futures suspension period is more than that of the pre suspension period and post suspension period. There is a bi-directional association-ship or bi-directional causality or pair- wise causality between spot price and futures price of rubber. From the results of the hedging efficiency, spot price volatility, and price discovery, it can be concluded that rubber futures market fulfils all the economic functions expected from a commodity futures market. Thus in India, the future of rubber futures is Bright…!!!

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: The paper describes an auditory interface using directional sound as a possible support for pilots during approach in an instrument landing scenario. Several ways of producing directional sounds are illustrated. One using speaker pairs and controlling power distribution between speakers is evaluated experimentally. Results show, that power alone is insufficient for positioning single isolated sound events, although discrimination in the horizontal plane performs better than in the vertical. Additional sound parameters to compensate for this are proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-adaptive software provides a profound solution for adapting applications to changing contexts in dynamic and heterogeneous environments. Having emerged from Autonomic Computing, it incorporates fully autonomous decision making based on predefined structural and behavioural models. The most common approach for architectural runtime adaptation is the MAPE-K adaptation loop implementing an external adaptation manager without manual user control. However, it has turned out that adaptation behaviour lacks acceptance if it does not correspond to a user’s expectations – particularly for Ubiquitous Computing scenarios with user interaction. Adaptations can be irritating and distracting if they are not appropriate for a certain situation. In general, uncertainty during development and at run-time causes problems with users being outside the adaptation loop. In a literature study, we analyse publications about self-adaptive software research. The results show a discrepancy between the motivated application domains, the maturity of examples, and the quality of evaluations on the one hand and the provided solutions on the other hand. Only few publications analysed the impact of their work on the user, but many employ user-oriented examples for motivation and demonstration. To incorporate the user within the adaptation loop and to deal with uncertainty, our proposed solutions enable user participation for interactive selfadaptive software while at the same time maintaining the benefits of intelligent autonomous behaviour. We define three dimensions of user participation, namely temporal, behavioural, and structural user participation. This dissertation contributes solutions for user participation in the temporal and behavioural dimension. The temporal dimension addresses the moment of adaptation which is classically determined by the self-adaptive system. We provide mechanisms allowing users to influence or to define the moment of adaptation. With our solution, users can have full control over the moment of adaptation or the self-adaptive software considers the user’s situation more appropriately. The behavioural dimension addresses the actual adaptation logic and the resulting run-time behaviour. Application behaviour is established during development and does not necessarily match the run-time expectations. Our contributions are three distinct solutions which allow users to make changes to the application’s runtime behaviour: dynamic utility functions, fuzzy-based reasoning, and learning-based reasoning. The foundation of our work is a notification and feedback solution that improves intelligibility and controllability of self-adaptive applications by implementing a bi-directional communication between self-adaptive software and the user. The different mechanisms from the temporal and behavioural participation dimension require the notification and feedback solution to inform users on adaptation actions and to provide a mechanism to influence adaptations. Case studies show the feasibility of the developed solutions. Moreover, an extensive user study with 62 participants was conducted to evaluate the impact of notifications before and after adaptations. Although the study revealed that there is no preference for a particular notification design, participants clearly appreciated intelligibility and controllability over autonomous adaptations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been widely known that a significant part of the bits are useless or even unused during the program execution. Bit-width analysis targets at finding the minimum bits needed for each variable in the program, which ensures the execution correctness and resources saving. In this paper, we proposed a static analysis method for bit-widths in general applications, which approximates conservatively at compile time and is independent of runtime conditions. While most related work focus on integer applications, our method is also tailored and applicable to floating point variables, which could be extended to transform floating point number into fixed point numbers together with precision analysis. We used more precise representations for data value ranges of both scalar and array variables. Element level analysis is carried out for arrays. We also suggested an alternative for the standard fixed-point iterations in bi-directional range analysis. These techniques are implemented on the Trimaran compiler structure and tested on a set of benchmarks to show the results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performances of high-speed network communications frequently rest with the distribution of data-stream. In this paper, a dynamic data-stream balancing architecture based on link information is introduced and discussed firstly. Then the algorithms for simultaneously acquiring the passing nodes and links of a path between any two source-destination nodes rapidly, as well as a dynamic data-stream distribution planning are proposed. Some related topics such as data fragment disposal, fair service, etc. are further studied and discussed. Besides, the performance and efficiency of proposed algorithms, especially for fair service and convergence, are evaluated through a demonstration with regard to the rate of bandwidth utilization. Hoping the discussion presented here can be helpful to application developers in selecting an effective strategy for planning the distribution of data-stream.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catadioptric sensors are combinations of mirrors and lenses made in order to obtain a wide field of view. In this paper we propose a new sensor that has omnidirectional viewing ability and it also provides depth information about the nearby surrounding. The sensor is based on a conventional camera coupled with a laser emitter and two hyperbolic mirrors. Mathematical formulation and precise specifications of the intrinsic and extrinsic parameters of the sensor are discussed. Our approach overcomes limitations of the existing omni-directional sensors and eventually leads to reduced costs of production