972 resultados para Direct broadcast satellite television
Resumo:
The direct simulation Monte Carlo (DSMC) method is a widely used approach for flow simulations having rarefied or nonequilibrium effects. It involves heavily to sample instantaneous values from prescribed distributions using random numbers. In this note, we briefly review the sampling techniques typically employed in the DSMC method and present two techniques to speedup related sampling processes. One technique is very efficient for sampling geometric locations of new particles and the other is useful for the Larsen-Borgnakke energy distribution.
Resumo:
The direct numerical simulation of boundary layer transition over a 5° half-cone-angle blunt cone is performed. The free-stream Mach number is 6 and the angle of attack is 1°. Random wall blow-and-suction perturbations are used to trigger the transition. Different from the authors’ previous work [Li et al., AIAA J. 46, 2899(2008)], the whole boundary layer flow over the cone is simulated (while in the author’s previous work, only two 45° regions around the leeward and the windward sections are simulated). The transition location on the cone surface is determined through the rapid increase in skin fraction coefficient (Cf). The transition line on the cone surface shows a nonmonotonic curve and the transition is delayed in the range of 0° ≤ θ ≤ 30° (θ = 0° is the leeward section). The mechanism of the delayed transition is studied by using joint frequency spectrum analysis and linear stability theory (LST). It is shown that the growth rates of unstable waves of the second mode are suppressed in the range of 20° ≤ θ ≤ 30°, which leads to the delayed transition location. Very low frequency waves VLFWs� are found in the time series recorded just before the transition location, and the periodic times of VLFWs are about one order larger than those of ordinary Mack second mode waves. Band-pass filter is used to analyze the low frequency waves, and they are deemed as the effect of large scale nonlinear perturbations triggered by LST waves when they are strong enough.The direct numerical simulation of boundary layer transition over a 5° half-cone-angle blunt cone is performed. The free-stream Mach number is 6 and the angle of attack is 1°. Random wall blow-and-suction perturbations are used to trigger the transition. Different from the authors’ previous work [ Li et al., AIAA J. 46, 2899 (2008) ], the whole boundary layer flow over the cone is simulated (while in the author’s previous work, only two 45° regions around the leeward and the windward sections are simulated). The transition location on the cone surface is determined through the rapid increase in skin fraction coefficient (Cf). The transition line on the cone surface shows a nonmonotonic curve and the transition is delayed in the range of 20° ≤ θ ≤ 30° (θ = 0° is the leeward section). The mechanism of the delayed transition is studied by using joint frequency spectrum analysis and linear stability theory (LST). It is shown that the growth rates of unstable waves of the second mode are suppressed in the range of 20° ≤ θ ≤ 30°, which leads to the delayed transition location. Very low frequency waves (VLFWs) are found in the time series recorded just before the transition location, and the periodic times of VLFWs are about one order larger than those of ordinary Mack second mode waves. Band-pass filter is used to analyze the low frequency waves, and they are deemed as the effect of large scale nonlinear perturbations triggered by LST waves when they are strong enough.
Resumo:
An in-situ visualization of two-phase flow inside anode flow bed of a small liquid fed direct methanol fuel cells in normal and reduced gravity has been conducted in a drop tower. The anode flow bed consists of 11 parallel straight channels. The length, width and depth of single channel, which had rectangular cross section, are 48.0, 2.5 and 2.0 mm, respectively. The rib width was 2.0 mm. The experimental results indicated that when the fuel cell orientation is vertical, two-phase flow pattern in anode channels can evolve from bubbly flow in normal gravity into slug flow in microgravity. The size of bubbles in the reduced gravity is also bigger. In microgravity, the bubbles rising speed in vertical channels is obviously slower than that in normal gravity. When the fuel cell orientation is horizontal, the slug flow in the reduced gravity has almost the same characteristic with that in normal gravity. It implies that the effect of gravity on two-phase flow is small and the bubbles removal is governed by viscous drag. When the gas slugs or gas columns occupy channels, the performance of liquid fed direct methanol fuel cells is failing rapidly. It infers that in long-term microgravity, flow bed and operating condition should be optimized to avoid concentration polarization of fuel cells.
Resumo:
We measured noninvasively step velocities of elementary two-dimensional (2D) islands on {110} faces of tetragonal lysozyme crystals, under various supersaturations, by laser confocal microscopy combined with differential interference contrast microscopy. We studied the correlation between the effects of protein impurities on the growth of elementary steps and their adsorption sites on a crystal surface, using three kinds of proteins: fluorescent-labeled lysozyme (F-lysozyme), covalently bonded dimers of lysozyme (dimer), and a 18 kDa polypeptide (18 kDa). These three protein impurities suppressed the advancement of the steps. However, they exhibited different supersaturation dependencies of the suppression of the step velocities. To clarify the cause of this difference, we observed in situ the adsorption sites of individual molecules of F-lysozyme and fluorescent-labeled dimer (F-dimer) on the crystal surface by single-molecule visualization. We found that F-lysozyme adsorbed preferentially on steps (i.e., kinks), whereas F-dimer adsorbed randomly on terraces. Taking into account the different adsorption sites of F-lysozyme and F-dimer, we could successfully explain the different effects of the impurities on the step velocities. These observations strongly suggest that 18 kDa also adsorbs randomly on terraces. Seikagaku lysozyme exhibited a complex effect that could not alone be explained by the two major impurities (dimer and 18 kDa) present in Seikagaku lysozyme, indicating that trace amounts of other impurities significantly affect the step advancement.
Resumo:
ENGLISH: In May 1971, a joint united states - Mexican experiment, Project Little Window 2, (LW-2) involving data collected by satellite, aircraft and ship sensors was made in the southern part of the Gulf of California. LW-2 was planned as an improved and enlarged version of LW-l (conducted the previous year; Stevenson and Miller, 1971) with field work scheduled to be made within a 200 by 200 km square region in the Gulf of California. The purposes of the new field study were to determine through coordinated measurements from ships, aircraft and satellites, the utility of weather satellites to measure surface temperature features of the ocean from space and specifically to evaluate the high resolution infrared sensors aboard N~ 1, ITOS 1 and NIMBUS 4 and to estimate the magnitude of the atmospheric correction factors needed to bring the data from the spacecraft sensors into agreement with surface measurements. Due to technical problems during LW-2, however, useful data could not be obtained from ITOS 1 and NIMBUS 4 so satellite information from only NOAA-1 was available for comparison. In addition, a new purpose was added, i.e., to determine the feasibility of using an Automatic picture Transmission (APT) receiver on shore and at sea to obtain good quality infrared data for the local region. SPANISH: En mayo 1971, los Estados Unidos y México realizaron un experimento en conjunto, Proyecto Little Window 2 (LW-2), en el que se incluyen datos obtenidos mediante captadores de satélites, aviones y barcos en la parte meridional del Golfo de California. Se planeó LW-2 para mejorar y ampliar el proyecto de LW-l (conducido el año anterior; Stevenson y Miller, 1971), realizándose el trabajo experimental en una región de 200 por 200 km cuadrados, en el Golfo de California. El objeto de este nuevo estudio experimental fue determinar mediante reconocimientos coordinados de barcos, aviones y satélites la conveniencia de los satélites meteorológicos para averiguar las características de la temperatura superficial del océano desde el espacio, y especialmente, evaluar los captadores infrarrojos de alta resolución a bordo de NOAA 1, ITOS 1 Y NIMBUS 4, y estimar la magnitud de los factores de corrección atmosféricos necesarios para corregir los datos de los captadores espaciales para que concuerden con los registros de la superficie. Sin embargo, debido a problemas técnicos durante LW-2, no fue posible obtener datos adecuados de ITOS 1 y NIMBUS 4, as1 que solo se pudo disponer de la información de NOAA 1 para hacer las comparaciones. Además se quiso determinar la posibilidad de usar un receptor de Trasmisión Automático de Fotografias (APT) en el mar para obtener datos infarojos de buena calidad en la región local. (PDF contains 525 pages.)
Resumo:
The entrainment rate of ambient gas into a turbulent argon plasma jet generated by plasma torch is directly measured using a “porous-wall chamber” technique. It is shown that with the increase of the mass flow rates of argon at the jet inlet, the mass flow rate of entrained gas increases. The normalized mass flow rate decreases with the increasing inlet mass flow rates of plasma torch. The entrained gas mass flow rate increases with increasing chamber length, but less depends on the arc current of the plasma torch at higher flow rates. The effects of different ways of inflowing gas into plasma torch on entrainment characteristics of plasma jet are also examined in this paper.
Resumo:
Dynamic measurements of the ion saturation current in the plasma plume by a double-electrostatic probe system were carried out. Regular signals obtained by the electros- tatic probe show good agreement with the stable plasma flow state. Dependence of the flow steadiness on the plasma generation parameters was discussed. As a fast response method, the double-electrostatic probe system is feasible to characterize the fluctuations in the plasma jet.