865 resultados para Dihydrotestosterone -- metabolism


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Programa de doctorado: Cáncer: Biología y Clínica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Programa de doctorado: Clínica Veterinaria e Investigación Terapéutica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis the application of biotechnological processes based on microbial metabolic degradation of halogenated compound has been investigated. Several studies showed that most of these pollutants can be biodegraded by single bacterial strains or mixed microbial population via aerobic direct metabolism or cometabolism using as a growth substrates aromatic or aliphatic hydrocarbons. The enhancement of two specific processes has been here object of study in relation with its own respective scenario described as follow: 1st) the bioremediation via aerobic cometabolism of soil contaminated by a high chlorinated compound using a mixed microbial population and the selection and isolation of consortium specific for the compound. 2nd) the implementation of a treatment technology based on direct metabolism of two pure strains at the exact point source of emission, preventing dilution and contamination of large volumes of waste fluids polluted by several halogenated compound minimizing the environmental impact. In order to verify the effect of these two new biotechnological application to remove halogenated compound and purpose them as a more efficient alternative continuous and batch tests have been set up in the experimental part of this thesis. Results obtained from the continuous tests in the second scenario have been supported by microbial analysis via Fluorescence in situ Hybridisation (FISH) and by a mathematical model of the system. The results showed that both process in its own respective scenario offer an effective solutions for the biological treatment of chlorinate compound pollution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Programa de doctorado en Oceanografía. La fecha de publicación es la fecha de lectura

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the recent years it is emerged that peripheral arterial disease (PAD) has become a growing health problem in Western countries. This is a progressive manifestation of atherothrombotic vascular disease, which results into the narrowing of the blood vessels of the lower limbs and, as final consequence, in critical leg ischemia. PAD often occurs along with other cardiovascular risk factors, including diabetes mellitus (DM), low-grade inflammation, hypertension, and lipid disorders. Patients with DM have an increased risk of developing PAD, and that risk increases with the duration of DM. Moreover, there is a growing population of patients identified with insulin resistance (IR), impaired glucose tolerance, and obesity, a pathological condition known as “metabolic syndrome”, which presents increased cardiovascular risk. Atherosclerosis is the earliest symptom of PAD and is a dynamic and progressive disease arising from the combination of endothelial dysfunction and inflammation. Endothelial dysfunction is a broad term that implies diminished production or availability of nitric oxide (NO) and/or an imbalance in the relative contribution of endothelium-derived relaxing factors. The secretion of these agents is considerably reduced in association with the major risks of atherosclerosis, especially hyperglycaemia and diabetes, and a reduced vascular repair has been observed in response to wound healing and to ischemia. Neovascularization does not only rely on the proliferation of local endothelial cells, but also involves bone marrow-derived stem cells, referred to as endothelial progenitor cells (EPCs), since they exhibit endothelial surface markers and properties. They can promote postnatal vasculogenesis by homing to, differentiating into an endothelial phenotype, proliferating and incorporating into new vessels. Consequently, EPCs are critical to endothelium maintenance and repair and their dysfunction contributes to vascular disease. The aim of this study has been the characterization of EPCs from healthy peripheral blood, in terms of proliferation, differentiation and function. Given the importance of NO in neovascularization and homing process, it has been investigated the expression of NO synthase (NOS) isoforms, eNOS, nNOS and iNOS, and the effects of their inhibition on EPC function. Moreover, it has been examined the expression of NADPH oxidase (Nox) isoforms which are the principal source of ROS in the cell. In fact, a number of evidences showed the correlation between ROS and NO metabolism, since oxidative stress causes NOS inactivation via enzyme uncoupling. In particular, it has been studied the expression of Nox2 and Nox4, constitutively expressed in endothelium, and Nox1. The second part of this research was focused on the study of EPCs under pathological conditions. Firstly, EPCs isolated from healthy subject were cultured in a hyperglycaemic medium, in order to evaluate the effects of high glucose concentration on EPCs. Secondly, EPCs were isolated from the peripheral blood of patients affected with PAD, both diabetic or not, and it was assessed their capacity to proliferate, differentiate, and to participate to neovasculogenesis. Furthermore, it was investigated the expression of NOS and Nox in these cells. Mononuclear cells isolated from peripheral blood of healthy patients, if cultured under differentiating conditions, differentiate into EPCs. These cells are not able to form capillary-like structures ex novo, but participate to vasculogenesis by incorporation into the new vessels formed by mature endothelial cells, such as HUVECs. With respect to NOS expression, these cells have high levels of iNOS, the inducible isoform of NOS, 3-4 fold higher than in HUVECs. While the endothelial isoform, eNOS, is poorly expressed in EPCs. The higher iNOS expression could be a form of compensation of lower eNOS levels. Under hyperglycaemic conditions, both iNOS and eNOS expression are enhanced compared to control EPCs, as resulted from experimental studies in animal models. In patients affected with PAD, the EPCs may act in different ways. Non-diabetic patients and diabetic patients with a higher vascular damage, evidenced by a higher number of circulating endothelial cells (CECs), show a reduced proliferation and ability to participate to vasculogenesis. On the other hand, diabetic patients with lower CEC number have proliferative and vasculogenic capacity more similar to healthy EPCs. eNOS levels in both patient types are equivalent to those of control, while iNOS expression is enhanced. Interestingly, nNOS is not detected in diabetic patients, analogously to other cell types in diabetics, which show a reduced or no nNOS expression. Concerning Nox expression, EPCs present higher levels of both Nox1 and Nox2, in comparison with HUVECs, while Nox4 is poorly expressed, probably because of uncompleted differentiation into an endothelial phenotype. Nox1 is more expressed in PAD patients, diabetic or not, than in controls, suggesting an increased ROS production. Nox2, instead, is lower in patients than in controls. Being Nox2 involved in cellular response to VEGF, its reduced expression can be referable to impaired vasculogenic potential of PAD patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]Starvation at all scales of plankton from archaea to medusae is the prevailing condition in marine ecosystems. Such nutrient-limitation will shift the physiological state in these organisms with accompanying changes in their physiology and biochemistry. Here, we review our laboratory’s progress in documenting these changes associated with starvation in a range of marine organisms. Specifically, we focused on respiration, ammonium excretion, CO2 production, RQ, respiratory ETS activity, isocitrate dehydrogenase and glutamate dehydrogenase activity in the mysid, Leptomysis lingvura, a dinoflagellate, Oxyrrhis marina and two bacteria, Vibrio natriegens, and Pseudomonas nautica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioremediation implies the use of living organisms, primarily microorganisms, to convert environmental contaminants into less toxic forms. The impact of the consequences of hydrocarbon release in the environment maintain a high research interest in the study of microbial metabolisms associated with the biodegradation of aromatic and aliphatic hydrocarbons but also in the analysis of microbial enzymes that can convert petroleum substrates to value-added products. The studies described in this Thesis fall within the research field that directs the efforts into identifying gene/proteins involved in the catabolism of n-alkanes and into studying the regulatory mechanisms leading to their oxidation. In particular the studies were aimed at investigating the molecular aspects of the ability of Rhodococcus sp. BCP1 to grow on aliphatic hydrocarbons as sole carbon and energy sources. We studied the ability of Rhodococcus sp. BCP1 to grow on gaseous (C2-C4), liquid (C5-C16) and solid (C17-C28) n-alkanes that resulted to be biochemically correlated with the activity of one or more monooxygenases. In order to identify the alkane monooxygenase that is involved in the n-alkanes degradation pathway in Rhodococcus sp. BCP1, PCR-based methodology was applied by using degenerate primers targeting AlkB monooxygenase family members. As result, a chromosomal region, including the alkB gene cluster, was cloned from Rhodococcus sp. BCP1 genome. We characterized the products of this alkB gene cluster and the products of the orfs included in the flanking regions by comparative analysis with the homologues in the database. alkB gene expression studies were carried out by RT-PCR and by the construction of a promoter probe vector containing the lacZ gene downstream of the alkB promoter. B-galactosidase assays revealed the alkB promoter activity induced by n-alkanes and by n-alkanes metabolic products. Furthermore, the transcriptional start of alkB gene was determined by primer extension procedure. A proteomic approach was subsequently applied to compare the protein patterns expressed by BCP1 growing on n-butane, n-hexane, n-hexadecane or n-eicosane with the protein pattern expressed by BCP1 growing on succinate. The accumulation of enzymes specifically induced on n-alkanes was determined. These enzymes were identified by tandem mass spectrometry (LC/MS/MS). Finally, a prm gene, homologue to the gene family coding for soluble di-iron monooxygenases (SDIMOs), has been isolated from Rhodococcus sp. BCP1 genome. This gene product could be involved in the degradation of gaseous n-alkanes in this Rhodococcus strain. The versatility in utilizing hydrocarbons and the discovery of new remarkable metabolic activities outline the potential applications of this microorganism in environmental and industrial biotechnologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire blight, caused by the gram negative bacterium Erwinia amylovora, is one of the most destructive bacterial diseases of Pomaceous plants. Therefore, the development of reliable methods to control this disease is desperately needed. This research investigated the possibility to interfere, by altering plant metabolism, on the interactions occurring between Erwinia amylovora, the host plant and the epiphytic microbial community in order to obtain a more effective control of fire blight. Prohexadione-calcium and trinexapac-ethyl, two dioxygenase inhibitors, were chosen as a chemical tool to influence plant metabolism. These compounds inhibit the 2-oxoglutarate-dependent dioxygenases and, therefore, they greatly influence plant metabolism. Moreover, dioxygenase inhibitors were found to enhance plant resistance to a wide range of pathogens. In particular, dioxygenase inhibitors application seems a promising method to control fire blight. From cited literature, it is assumed that these compounds increase plant defence mainly by a transient alteration of flavonoids metabolism. We tried to demonstrate, that the reduction of susceptibility to disease could be partially due to an indirect influence on the microbial community established on plant surface. The possibility to influence the interactions occurring in the epiphytic microbial community is particularly interesting, in fact, the relationships among different bacterial populations on plant surface is a key factor for a more effective biological control of plant diseases. Furthermore, we evaluated the possibility to combine the application of dioxygenase inhibitors with biological control in order to develop an integrate strategy for control of fire blight. The first step for this study was the isolation of a pathogenic strain of E. amylovora. In addition, we isolated different epiphytic bacteria, which respond to general requirements for biological control agents. Successively, the effect of dioxygenase inhibitors treatment on microbial community was investigated on different plant organs (stigmas, nectaries and leaves). An increase in epiphytic microbial population was found. Further experiments were performed with aim to explain this effect. In particular, changes in sugar content of nectar were observed. These changes, decreasing the osmotic potential of nectar, might allow a more consistent growth of epiphytic bacteria on blossoms. On leaves were found similar differences as well. As far as the interactions between E. amylovora and host plant, they were deeply investigated by advanced microscopical analysis. The influence of dioxygenase inhibitors and SAR inducers application on the infection process and migration of pathogen inside different plant tissues was studied. These microscopical techniques, combined with the use of gpf-labelled E. amylovora, allowed the development of a bioassay method for resistance inducers efficacy screening. The final part of the work demonstrated that the reduction of disease susceptibility observed in plants treated with prohexadione-calcium is mainly due to the accumulation of a novel phytoalexins: luteoforol. This 3-deoxyflavonoid was proven to have a strong antimicrobial activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LRP1 modulates APP trafficking and metabolism within compartments of the secretory pathway The amyloid precursor protein (APP) is the parent protein to the amyloid beta peptide (Abeta) and is a central player in Alzheimer’s disease (AD) pathology. Abeta liberation depends on APP cleavage by beta- and gamma-secretases. To date, only a unilateral view of APP processing exists, excluding other proteins, which might be transported together and/or processed dependent on each other by the secretases described above. The low density lipoprotein receptor related protein 1 (LRP1) was shown to function as such a mediator of APP processing at multiple steps. Newly synthesized LRP1 can interact with APP, implying an interaction between these two proteins early in the secretory pathway. Therefore, we wanted to investigate whether LRP1 can mediate APP trafficking along the secretory pathway, and, if so, whether it affects APP processing. Indeed, we demonstrate that APP trafficking is strongly influenced by LRP1 transport through the endoplasmic reticulum (ER) and Golgi compartments. LRP1-constructs with ER- and Golgi-retention motifs (LRP-CT KKAA, LRP-CT KKFF) had the capacity to retard APP trafficking at the respective steps in the secretory pathway. Here, we provide evidence that APP metabolism occurs in close conjunction with LRP1 trafficking, highlighting a new role of lipoprotein receptors in neurodegenerative diseases. Increased AICD generation is ineffective in nuclear translocation and transcriptional activity A sequence of amyloid precursor protein (APP) cleavages gives rise to the APP intracellular domain (AICD) together with amyloid beta peptide (Abeta) and/or p3 fragment. One of the environmental factors identified favouring the accumulation of AICD appears to be a rise in intracellular pH. This accumulation is a result of an abrogated cleavage event and does not extend to other secretase substrates. AICD can activate the transcription of artificially expressed constructs and many downstream gene targets have been discussed. Here we further identified the metabolism and subcellular localization of the constructs used in this well documented gene reporter assay. We also co-examined the mechanistic lead up to the AICD accumulation and explored possible significances for its increased expression. We found that most of the AICD generated under pH neutralized conditions is likely that cleaved from C83. Furthermore, the AICD surplus is not transcriptionally active but rather remains membrane tethered and free in the cytosol where it interacts with Fe65. However, Fe65 is still essential in AICD mediated transcriptional transactivation although its exact role in this set of events is unclear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The principle aim of this study was to investigate biological predictors of response and resistance to multiple myeloma treatment. Two hypothesis had been proposed as responsible of responsiveness: SNPs in DNA repair and Folate pathway, and P-gp dependent efflux. As a first objective, panel of SNPs in DNA repair and Folate pathway genes, were analyzed. It was a retrospective study in a group of 454, previously untreated, MM patients enrolled in a randomized phase III open-label study. Results show that some SNPs in Folate pathway are correlated with response to MM treatment. MTR genotype was associated with favorable response in the overall population of MM patients. However, this relation, disappear after adjustment for treatment response. When poor responder includes very good partial response, partial response and stable/progressive disease MTFHR rs1801131 genotype was associated with poor response to therapy. This relation - unlike in MTR – was still significant after adjustment for treatment response. Identification of this genetic variant in MM patients could be used as an independent prognostic factor for therapeutic outcome in the clinical practice. In the second objective, basic disposition characteristics of bortezomib was investigated. We demonstrated that bortezomib is a P-gp substrate in a bi-directional transport study. We obtain apparent permeability rate values that together with solubility values can have a crucial implication in better understanding of bortezomib pharmacokinetics with respect to the importance of membrane transporters. Subsequently, in view of the importance of P-gp for bortezomib responsiveness a panel of SNPs in ABCB1 gene - coding for P-gp - were analyzed. In particular we analyzed five SNPs, none of them however correlated with treatment responsiveness. However, we found a significant association between ABCB1 variants and cytogenetic abnormalities. In particular, deletion of chromosome 17 and t(4;14) translocation were present in patients harboring rs60023214 and rs2038502 variants respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis reports an integrated analytical approach for the study of physicochemical and biological properties of new synthetic bile acid (BA) analogues agonists of FXR and TGR5 receptors. Structure-activity data were compared with those previous obtained using the same experimental protocols on synthetic and natural occurring BA. The new synthetic BA analogues are classified in different groups according also to their potency as a FXR and TGR5 agonists: unconjugated and steroid modified BA and side chain modified BA including taurine or glycine conjugates and pseudo-conjugates (sulphonate and sulphate analogues). In order to investigate the relationship between structure and activity the synthetic analogues where admitted to a physicochemical characterization and to a preliminary screening for their pharmacokinetic and metabolism using a bile fistula rat model. Sensitive and accurate analytical methods have been developed for the quali-quantitative analysis of BA in biological fluids and sample used for physicochemical studies. Combined High Performance Liquid Chromatography Electrospray tandem mass spectrometry with efficient chromatographic separation of all studied BA and their metabolites have been optimized and validated. Analytical strategies for the identification of the BA and their minor metabolites have been developed. Taurine and glycine conjugates were identified in MS/MS by monitoring the specific ion transitions in multiple reaction monitoring (MRM) mode while all other metabolites (sulphate, glucuronic acid, dehydroxylated, decarboxylated or oxo) were monitored in a selected-ion reaction (SIR) mode with a negative ESI interface by the following ions. Accurate and precise data where achieved regarding the main physicochemical properties including solubility, detergency, lipophilicity and albumin binding . These studies have shown that minor structural modification greatly affect the pharmacokinetics and metabolism of the new analogues in respect to the natural BA and on turn their site of action, particularly where their receptor are located in the enterohepatic circulation.