716 resultados para Dietary Astaxanthin
Resumo:
Long-term dietary weight loss results in complex metabolic changes. However, its effect on cholesterol metabolism in obese subjects is still unclear.
Resumo:
To determine how changes in lipids, liver enzymes, and inflammatory and glycemia markers intercorrelate during prolonged dietary intervention in obese participants with or without type 2 diabetes (T2D).
Resumo:
Dietary supplements (DS) are easily available and increasingly used, and adverse hepatic reactions have been reported following their intake. To critically review the literature on liver injury because of DSs, delineating patterns and mechanisms of injury and to increase the awareness towards this cause of acute and chronic liver damage. Studies and case reports on liver injury specifically because of DSs published between 1990 and 2010 were searched in the PubMed and EMBASE data bases using the terms 'dietary/nutritional supplements', 'adverse hepatic reactions', 'liver injury'; 'hepatitis', 'liver failure', 'vitamin A' and 'retinoids', and reviewed for yet unidentified publications. Significant liver injury was reported after intake of Herbalife and Hydroxycut products, tea extracts from Camellia sinensis, products containing usnic acid and high contents of vitamin A, anabolic steroids and others. No uniform pattern of hepatotoxicity has been identified and severity may range from asymptomatic elevations of serum liver enzymes to hepatic failure and death. Exact estimates on how frequent adverse hepatic reactions occur as a result of DSs cannot be provided. Liver injury from DSs mimicking other liver diseases is increasingly recognized. Measures to reduce risk include tighter regulation of their production and distribution and increased awareness of users and professionals of the potential risks.
Resumo:
We investigated the effects of different dietary vitamin D regimen on selected blood parameters in laying hens. Supplementation with vitamin D-3 only was compared with a combination of vitamin D-3 and its metabolite 25-hydroxy-cholecalciferol (25(OH)D-3). Blood concentrations of total calcium, phosphate and 25 (OH)D-3 were determined. Four thousand one-day-old LSL chicks were split in two treatment groups and distributed to eight pens. The control group was given a commercial animal diet containing 2800 IU synthetic vitamin D-3 in the starter feed and 2000 IU synthetic vitamin D-3 in the pullet feed. The experimental group was fed the same commercial diet in which half the synthetic vitamin D-3 content had been substituted with 25(OH)D-3 (Hy center dot D (R)). At 18 weeks of age, pullets were transferred to the layer house. At the ages of 11, 18 and 34 weeks, between 120 and 160 blood samples were collected from both the control and the experimental groups, respectively. The experimental group had higher levels of 25 (OH)D-3 than the control group at all three ages. Serum calcium levels did not differ between the treatment groups at any age. With the onset of laying, calcium levels rose significantly. Whereas blood serum concentration at 18 weeks was 3 mmol/L in both treatment groups, it increased to 8.32 mmol/L in the control group and to 8.66 mmol/L in the experimental group at week 34. At weeks 11 and 34, phosphate was significantly lower in the experimental group. In conclusion, HyD (R) significantly affected serum phosphate and 25(OH)D-3 levels. No effects of (25(OH)D-3 supplementation on performance, shell quality and fractures of keelbones were found.
Resumo:
BACKGROUND: The role of albumin on blood pressure response to different salt challenges is not known. Therefore, we studied the blood pressure response of analbuminemic Nagase rats (NAR) to different salt challenges. 11beta-Hydroxysteroid dehydrogenase type 2 (11beta-HSD2), the enzyme regulating the glucocorticoid access to the mineralocorticoid receptor, an enzyme that is decreased in humans with salt sensitive hypertension and other diseases with abnormal renal salt retention, was assessed during salt challenges. METHODS: Blood pressure was measured continuously by an intra-arterial catheter and a telemetry system in NAR (n = 8). NAR were set successively for 7 days on a normal (0.45% NaCl), high (8% NaCl), low (0.1% NaCl) and normal salt diet again, to assess salt related response in mean systolic (SBP) and diastolic blood pressure (DBP). 11beta-HSD2activity was assessed by measuring the urinary (THB + 5alpha-THB)/THA ratio with gas chromatography - mass spectrometry. RESULTS: Mean SBP and DBP increased with high salt intake (normal salt vs. high salt: SBP: 114 +/- 1 vs.119 +/- 3 mm Hg, p < 0.01; DBP: 84 +/- 1 vs. 88 +/- 3 mm Hg; n = 8; p < 0.01). Urinary (THB +5alpha-THB)/THA ratio increased during the high-salt period when compared to the normal-salt period (high salt vs. normal salt: 0.52 +/- 0.10 vs. 0.37 +/- 0.07; p = 0.05) indicating decreased 11beta-HSD2activity. CONCLUSION: Analbuminemic Nagase rats express increased blood pressure and reduced 11beta-HSD2 activity in response to a high-salt diet.
Resumo:
The diet of early human ancestors has received renewed theoretical interest since the discovery of elevated d13C values in the enamel of Australopithecus africanus and Paranthropus robustus. As a result, the hominin diet is hypothesized to have included C4 grass or the tissues of animals which themselves consumed C4 grass. On mechanical grounds, such a diet is incompatible with the dental morphology and dental microwear of early hominins. Most inferences, particularly for Paranthropus, favor a diet of hard or mechanically resistant foods. This discrepancy has invigorated the longstanding hypothesis that hominins consumed plant underground storage organs (USOs). Plant USOs are attractive candidate foods because many bulbous grasses and cormous sedges use C4 photosynthesis. Yet mechanical data for USOs—or any putative hominin food—are scarcely known. To fill this empirical void we measured the mechanical properties of USOs from 98 plant species from across sub-Saharan Africa. We found that rhizomes were the most resistant to deformation and fracture, followed by tubers, corms, and bulbs. An important result of this study is that corms exhibited low toughness values (mean = 265.0 J m-2) and relatively high Young’s modulus values (mean = 4.9 MPa). This combination of properties fits many descriptions of the hominin diet as consisting of hard-brittle objects. When compared to corms, bulbs are tougher (mean = 325.0 J m-2) and less stiff (mean = 2.5 MPa). Again, this combination of traits resembles dietary inferences, especially for Australopithecus, which is predicted to have consumed soft-tough foods. Lastly, we observed the roasting behavior of Hadza hunter-gatherers and measured the effects of roasting on the toughness on undomesticated tubers. Our results support assumptions that roasting lessens the work of mastication, and, by inference, the cost of digestion. Together these findings provide the first mechanical basis for discussing the adaptive advantages of roasting tubers and the plausibility of USOs in the diet of early hominins.
Resumo:
Natural zeolites are crystalline aluminosilicates with unique adsorption, cation-exchange, and catalytic properties that have multiple uses in industry and agriculture. TMAZ, a natural zeolite clinoptilolite with enhanced physicochemical properties, is the basis of the dietary supplements Megamin and Lycopenomin, which have demonstrated antioxidant activity in humans. The aim of this prospective, open, and controlled parallel-group study was to investigate the effects of supplementation with TMAZ on the cellular immune system in patients undergoing treatment for immunodeficiency disorder. A total of 61 patients were administered daily TMAZ doses of 1.2 g (Lycopenomin) and 3.6 g (Megamin) for 6 to 8 weeks, during which the patients' primary medical therapy was continued unchanged. Blood and lymphocyte counts were performed at baseline and at the end of the study. Blood count parameters were not relevantly affected in either of the two treatment groups. Megamin administration resulted in significantly increased CD4+, CD19+, and HLA-DR+ lymphocyte counts and a significantly decreased CD56+ cell count. Lycopenomin was associated with an increased CD3+ cell count and a decreased CD56+ lymphocyte count. No adverse reactions to the treatments were observed.
Resumo:
Accumulation of iron probably predisposes the aging brain to progressive neuronal loss. We examined various markers of oxidative stress and damage in the brain and liver of 3- and 24-month-old rats following supplementation with the lipophilic iron derivative [(3,5,5-trimethylhexanoyl)ferrocene] (TMHF), which is capable of crossing the blood-brain barrier. At both ages, iron concentration increased markedly in the liver but failed to increase in the brain. In the liver of TMHF-treated young rats, levels of alpha- and gamma-tocopherols and glutathione (GSH) were also higher. In contrast, the brain displayed unaltered levels of the tocopherols and GSH. Malondialdehyde (MDA) level was also higher in the cerebrospinal fluid (CSF) and the liver but not in the brain. In old rats, the absence of an increase in iron concentration in the brain was reflected by unaltered concentrations of GSH, tocopherols, and MDA as compared to that in untreated rats. In the aging liver, concentrations of GSH and MDA increased with TMHF treatment. Morphological studies revealed unaltered levels of iron, ferritin, heme oxygenase-1 (HO-1), nitrotyrosine (NT), or MDA in the brains of both young and old rats treated with TMHF. In contrast, TMHF treatment increased the level of HO-1 in Kupffer cells, NT in hepatic endothelial cells, and MDA and ferritin in hepatocytes. Although these results demonstrated an increase in the biochemical markers of oxidative stress and damage in response to increasing concentrations of iron in the liver, they also demonstrated that the brain is well protected against dietary iron overload by using iron in a lipid-soluble formulation.
Resumo:
BACKGROUND: Lack of reliable dietary data has hampered the ability to effectively distinguish between effects of smoking and diet on plasma antioxidant status. As confirmed by analyses of comprehensive food-frequency questionnaires, the total dietary intakes of fruit and vegetables and of dietary antioxidants were not significantly different between the study groups in the present study, thereby enabling isolation of the effect of smoking. OBJECTIVE: Our objective was to investigate the effect of smoking on plasma antioxidant status by measuring ascorbic acid, alpha-tocopherol, gamma-tocopherol, beta-carotene, and lycopene, and subsequently, to test the effect of a 3-mo dietary supplementation with a moderate-dose vitamin cocktail. DESIGN: In a double-blind, placebo-controlled design, the effect of a vitamin cocktail containing 272 mg vitamin C, 31 mg all-rac-alpha-tocopheryl acetate, and 400 microg folic acid on plasma antioxidants was determined in a population of smokers (n = 37) and nonsmokers (n = 38). The population was selected for a low intake of fruit and vegetables and recruited from the San Francisco Bay area. RESULTS: Only ascorbic acid was significantly depleted by smoking per se (P < 0.01). After the 3-mo supplementation period, ascorbic acid was efficiently repleted in smokers (P < 0.001). Plasma alpha-tocopherol and the ratio of alpha- to gamma-tocopherol increased significantly in both supplemented groups (P < 0.05). CONCLUSIONS: Our data suggest that previous reports of lower concentrations of plasma vitamin E and carotenoids in smokers than in nonsmokers may primarily have been caused by differences in dietary habits between study groups. Plasma ascorbic acid was depleted by smoking and repleted by moderate supplementation.
Resumo:
OBJECTIVE: To assess the effect of a possible interaction between dietary fat and physical inactivity on whole-body insulin sensitivity and intramyocellular lipids (IMCLs). RESEARCH DESIGN AND METHODS: Eight healthy male volunteers were studied on two occasions. After 2 days of an equilibrated diet and moderate physical activity, participants remained inactive (bed rest) for 60 h and consumed either a high-saturated fat (45% fat, of which approximately 60% was saturated fat [BR-HF]) or a high-carbohydrate (70% carbohydrate [BR-HCHO]) diet. To evaluate the effect of a high-fat diet alone, six of the eight volunteers were restudied after a 2-day equilibrated diet followed by 60 h on a high-saturated fat diet and controlled physical activity (PA-HF). Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp and IMCL concentrations by (1)H-magnetic resonance spectroscopy. RESULTS: Insulin-mediated glucose disposal was decreased by BR-HF condition (-24 +/- 6%, P < 0.05) but did not change with BR-HCHO (+19 +/- 10%, NS). BR-HF and BR-HCHO increased IMCL levels (+32 +/- 7%, P < 0.05 and +17 +/- 8%, P < 0.0011, respectively). Although the increase in IMCL levels with PA-HF (+31 +/- 19%, P = 0.12) was similar to that during BR-HF, insulin-mediated glucose disposal (-7 +/- 9%, NS) was not decreased. CONCLUSIONS: These data indicate that physical inactivity and a high-saturated fat diet may interact to reduce whole-body insulin sensitivity. IMCL content was influenced by dietary lipid and physical inactivity but was not directly associated with insulin resistance.
Resumo:
We prospectively investigated urinary iodine concentration (UIC) in pregnant women and in female, non-pregnant controls in the canton of Berne, Switzerland, in 1992. Mean UIC of pregnant women [205 +/- 151 microg iodine/g creatinine (microg l/g Cr); no. = 153] steadily decreased from the first (236 +/- 180 microg l/g Cr; no. = 31) to the third trimester (183 +/- 111 microg l/g Cr, p < 0.0001; no. = 66) and differed significantly from that of the control group (91 +/- 37 microg l/g Cr, p < 0.0001; no. = 119). UIC increased 2.6-fold from levels indicating mild iodine deficiency in controls to the first trimester, demonstrating that high UIC during early gestation does not necessarily reflect a sufficient iodine supply to the overall population. Pregnancy is accompanied by important alterations in the regulation of thyroid function and iodine metabolism. Increased renal iodine clearance during pregnancy may explain increased UIC during early gestation, whereas increased thyroidal iodine clearance as well as the iodine shift from the maternal circulation to the growing fetal-placental unit, which both tend to lower the circulating serum levels of inorganic iodide, probably are the causes of the continuous decrease of UIC over the course of pregnancy. Mean UIC in our control group, as well as in one parallel and several consecutive investigations in the same region in the 1990s, was found to be below the actually recommended threshold, indicating a new tendency towards mild to moderate iodine deficiency. As salt is the main source of dietary iodine in Switzerland, its iodine concentration was therefore increased nationwide in 1998 for the fourth time, following increases in 1922, 1965 and 1980.
Resumo:
The microalga Haematococcus pluvialis was cultivated in MES-volvox medium at various light intensities and CO2 concentrations. It was found that CO2 concentrations of 10 and 15%, in combination with high irradiance at initial pH =6.7, accelerate astaxanthin accumulation in H. pluvialis cells but obstruct cell growth. The purpose of this research study was to devise a one-stage process consisting of the simultaneous cultivation of H. pluvialis and astaxanthin production using high light intensity and high CO2 concentration. This could be achieved at 200 µE/m2s and 15% CO2 in growth medium at initial pH = 4.3. Compared to the traditional two-stage H. pluvialis cultivation system, this one-step process can save up to 8-9 days of astaxanthin production time. The astaxanthin content in H. pluvialis cells induced with high light intensity only or with a combination of high light intensity and high CO2 concentration had comparable astaxanthin content; 94 and 97 mg/g dry biomass, respectively. However, it was extremely low in nitrate-free medium at high irradiance alone or combined with high CO2 concentration, with an average value of 4 mg/g dry biomass. Cell density was 40% less in cultures under discontinuous illumination compared to continuous illumination. This process could serve as a microalgal CO2 mitigation system after further understanding of the CO2 fixation ability of H. pluvialis has been gained.