995 resultados para Deposition Parameters
Resumo:
T84 is an established cell line expressing an enterocyte phenotype whose permeability properties have been widely explored. Osmotic permeability (P OSM), hydraulic permeability (P HYDR) and transport-associated net water fluxes (J W-transp), as well as short-circuit current (I SC), transepithelial resistance (R T), and potential difference (deltaV T) were measured in T84 monolayers with the following results: P OSM 1.3 ± 0.1 cm.s-1 x 10-3; P HYDR 0.27 ± 0.02 cm.s-1; R T 2426 ± 109 omega.cm², and deltaV T 1.31 ± 0.38 mV. The effect of 50 µM 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DCEBIO), a "net Cl- secretory agent", on T84 cells was also studied. We confirm the reported important increase in I SC induced by DCEBIO which was associated here with a modest secretory deltaJ W-transp. The present results were compared with those reported using the same experimental approach applied to established cell lines originating from intestinal and renal epithelial cells (Caco-2, LLC-PK1 and RCCD-1). No clear association between P HYDR and R T could be demonstrated and high P HYDR values were observed in an electrically tight epithelium, supporting the view that a "water leaky" barrier is not necessarily an "electrically leaky" one. Furthermore, the modest secretory deltaJ W-transp was not consistent with previous results obtained with RCCD-1 cells stimulated with vasopressin (absorptive fluxes) or with T84 cells secreting water under the action of Escherichia coli heat stable enterotoxin. We conclude that, while the presence of aquaporins is necessary to dissipate an external osmotic gradient, coupling between water and ion transport cannot be explained by a simple and common underlying mechanism.
Resumo:
Crude brain homogenates of terminally diseased hamsters infected with the 263 K strain of scrapie (PrP Sc) were heated and/or pressurized at 800 MPa at 60ºC for different times (a few seconds or 5, 30, 120 min) in phosphate-buffered saline (PBS) of different pH and concentration. Prion proteins were analyzed on immunoblots for their proteinase K (PK) resistance, and in hamster bioassays for their infectivity. Samples pressurized under initially neutral conditions and containing native PrP Sc were negative on immunoblots after PK treatment, and a 6-7 log reduction of infectious units per gram was found when the samples were pressurized in PBS of pH 7.4 for 2 h. A pressure-induced change in the protein conformation of native PrP Sc may lead to less PK resistant and less infectious prions. However, opposite results were obtained after pressurizing native infectious prions at slightly acidic pH and in PBS of higher concentration. In this case an extensive fraction of native PrP Sc remained PK resistant after pressure treatment, indicating a protective effect possibly due to induced aggregation of prion proteins in such buffers.
Resumo:
We evaluated the relationship of leptin with hypertension adjusted for body mass index (BMI) and/or waist circumference in a population of Japanese-Brazilian women aged > or = 30 years with centrally distributed adiposity. After excluding diabetic subjects, the study subjects - who participated in a population-based study on the prevalence of metabolic syndrome - showed prevalence rates of obesity (BMI > or = 25 kg/m²) and central adiposity (waist > or = 80 cm) of 32.0 and 37.8%, respectively. The hypertensive group (N = 162) was older, had higher BMI (24.9 ± 4.2 vs 23.3 ± 3.4 kg/m², P < 0.001), waist circumference (81.1 ± 10.1 vs 76.3 ± 8.2 cm, P < 0.001) and insulin levels (8.0 ± 6.2 vs 7.1 ± 4.9 µU/mL, P < 0.05) than the normotensive group (N = 322) and showed an unfavorable metabolic profile (higher 2-h plasma glucose, C-reactive protein and non-HDL cholesterol levels). Leptin did not differ between groups (8.2 ± 6.8 vs 7.2 ± 6.6 ng/mL, P = 0.09, for hypertensive vs normotensive, respectively) and its levels correlated significantly with anthropometric variables but not with blood pressure. Logistic regression analysis indicated that age and waist were independently associated with hypertension but not with homeostasis model assessment of insulin resistance or leptin levels. The lack of an independent association of hypertension with metabolic parameters (2-h glucose, C-reactive protein and non-HDL cholesterol) after adjustment for central adiposity suggested that visceral fat deposition may be the common mediator of the disturbances of the metabolic syndrome. Our data indicate that age and waist are major determinants of hypertension in this population of centrally obese (waist > or = 80 cm) Japanese-Brazilian women, but do not support a role for leptin in the elevation of blood pressure.
Resumo:
Carbon dioxide is regarded, nowadays, as a primary anthropogenic greenhouse gas leading to global warming. Hence, chemical fixation of CO2 has attracted much attention as a possible way to manufacture useful chemicals. One of the most interesting approaches of CO2 transformations is the synthesis of organic carbonates. Since conventional production technologies of these compounds involve poisonous phosgene and carbon monoxide, there is a need to develop novel synthetic methods that would better match the principles of "Green Chemistry" towards protection of the environment and human health. Over the years, synthesis of dimethyl carbonate was under intensive investigation in the academia and industry. Therefore, this study was entirely directed towards equally important homologue of carbonic esters family namely diethyl carbonate (DEC). Novel synthesis method of DEC starting from ethanol and CO2 over heterogeneous catalysts based on ceria (CeO2) was studied in the batch reactor. However, the plausible drawback of the reaction is thermodynamic limitations. The calculated values revealed that the reaction is exothermic (ΔrHØ298K = ─ 16.6 J/ ) and does not occur spontaneously at rooms temperature (ΔrGØ 298K = 35.85 kJ/mol). Moreover, co-produced water easily shifts the reaction equilibrium towards reactants excluding achievement of high yields of the carbonate. Therefore, in-situ dehydration has been applied using butylene oxide as a chemical water trap. A 9-fold enhancement in the amount of DEC was observed upon introduction of butylene oxide to the reaction media in comparison to the synthetic method without any water removal. This result confirms that reaction equilibrium was shifted in favour of the desired product and thermodynamic boundaries of the reaction were suppressed by using butylene oxide as a water scavenger. In order to obtain insight into the reaction network, the kinetic experiments were performed over commercial cerium oxide. On the basis of the selectivity/conversion profile it could be concluded that the one-pot synthesis of diethyl carbonate from ethanol, CO2 and butylene oxide occurs via a consecutive route involving cyclic carbonate as an intermediate. Since commercial cerium oxide suffers from the deactivation problems already after first reaction cycle, in-house CeO2 was prepared applying room temperature precipitation technique. Variation of the synthesis parameters such as synthesis time, calcination temperature and pH of the reaction solution turned to have considerable influence on the physico-chemical and catalytic properties of CeO2. The increase of the synthesis time resulted in high specific surface area of cerium oxide and catalyst prepared within 50 h exhibited the highest amount of basic sites on its surface. Furthermore, synthesis under pH 11 yielded cerium oxide with the highest specific surface area, 139 m2/g, among all prepared catalysts. Moreover, CeO2─pH11 catalyst demonstrated the best catalytic activity and 2 mmol of DEC was produced at 180 oC and 9 MPa of the final reaction pressure. In addition, ceria-supported onto high specific surface area silicas MCM-41, SBA-15 and silica gel were synthesized and tested for the first time as catalysts in the synthesis of DEC. Deposition of cerium oxide on MCM-41 and SiO2 supports resulted in a substantial increase of the alkalinity of the carrier materials. Hexagonal SBA-15 modified with 20 wt % of ceria exhibited the second highest basicity in the series of supported catalysts. Evaluation of the catalytic activity of ceria-supported catalysts showed that reaction carried out over 20 wt % CeO2-SBA-15 generated the highest amount of DEC.
Resumo:
In this thesis the effect of focal point parameters in fiber laser welding of structural steel is studied. The goal is to establish relations between laser power, focal point diameter and focal point position with the resulting quality, weld-bead geometry and hardness of the welds. In the laboratory experiments, AB AH36 shipbuilding steel was welded in an I-butt joint configuration using IPG YLS-10000 continuous wave fiber laser. The quality of the welds produced were evaluated based on standard SFS-EN ISO 13919-1. The weld-bead geometry was defined from the weld cross-sections and Vickers hardness test was used to measure hardness's from the middle of the cross-sections. It was shown that all the studied focal point parameters have an effect on the quality, weld-bead geometry and hardness of the welds produced.
Resumo:
Atomic Layer Deposition (ALD) is the technology of choice where very thin and highquality films are required. Its advantage is its ability to deposit dense and pinhole-free coatings in a controllable manner. It has already shown promising results in a range of applications, e.g. diffusion barrier coatings for OLED displays, surface passivation layers for solar panels. Spatial Atomic Layer Deposition (SALD) is a concept that allows a dramatic increase in ALD throughput. During the SALD process, the substrate moves between spatially separated zones filled with the respective precursor gases and reagents in such a manner that the exposure sequence replicates the conventional ALD cycle. The present work describes the development of a high-throughput ALD process. Preliminary process studies were made using an SALD reactor designed especially for this purpose. The basic properties of the ALD process were demonstrated using the wellstudied Al2O3 trimethyl aluminium (TMA)+H2O process. It was shown that the SALD reactor is able to deposit uniform films in true ALD mode. The ALD nature of the process was proven by demonstrating self-limiting behaviour and linear film growth. The process behaviour and properties of synthesized films were in good agreement with previous ALD studies. Issues related to anomalous deposition at low temperatures were addressed as well. The quality of the coatings was demonstrated by applying 20 nm of the Al2O3 on to polymer substrate and measuring its moisture barrier properties. The results of tests confirmed the superior properties of the coatings and their suitability for flexible electronics encapsulation. Successful results led to the development of a pilot scale roll-to-roll coating system. It was demonstrated that the system is able to deposit superior quality films with a water transmission rate of 5x10-6 g/m2day at a web speed of 0.25 m/min. That is equivalent to a production rate of 180 m2/day and can be potentially increased by using wider webs. State-of-art film quality, high production rates and repeatable results make SALD the technology of choice for manufacturing ultra-high barrier coatings for flexible electronics.
Resumo:
Heart rate variability (HRV) provides important information about cardiac autonomic modulation. Since it is a noninvasive and inexpensive method, HRV has been used to evaluate several parameters of cardiovascular health. However, the internal reproducibility of this method has been challenged in some studies. Our aim was to determine the intra-individual reproducibility of HRV parameters in short-term recordings obtained in supine and orthostatic positions. Electrocardiographic (ECG) recordings were obtained from 30 healthy subjects (20-49 years, 14 men) using a digital apparatus (sampling ratio = 250 Hz). ECG was recorded for 10 min in the supine position and for 10 min in the orthostatic position. The procedure was repeated 2-3 h later. Time and frequency domain analyses were performed. Frequency domain included low (LF, 0.04-0.15 Hz) and high frequency (HF, 0.15-0.4 Hz) bands. Power spectral analysis was performed by the autoregressive method and model order was set at 16. Intra-subject agreement was assessed by linear regression analysis, test of difference in variances and limits of agreement. Most HRV measures (pNN50, RMSSD, LF, HF, and LF/HF ratio) were reproducible independent of body position. Better correlation indexes (r > 0.6) were obtained in the orthostatic position. Bland-Altman plots revealed that most values were inside the agreement limits, indicating concordance between measures. Only SDNN and NNv in the supine position were not reproducible. Our results showed reproducibility of HRV parameters when recorded in the same individual with a short time between two exams. The increased sympathetic activity occurring in the orthostatic position probably facilitates reproducibility of the HRV indexes.
Resumo:
We examined the effect of exercise training (Ex) without (Ex 0%) or with a 3% workload (Ex 3%) on different cardiac and renal parameters in renovascular hypertensive (2K1C) male Fisher rats weighing 150-200 g. Ex was performed for 5 weeks, 1 h/day, 5 days/week. Ex 0% or Ex 3% induced similar attenuation of baseline mean arterial pressure (MAP, 119 ± 5 mmHg in 2K1C Ex 0%, N = 6, and 118 ± 5 mmHg in 2K1C Ex 3%, N = 11, vs 99 ± 4 mmHg in sham sedentary (Sham Sed) controls, N = 10) and heart rate (HR, bpm) (383 ± 13 in 2K1C Ex 0%, N = 6, and 390 ± 14 in 2K1C Ex 3%, N = 11 vs 371 ± 11 in Sham Sed, N = 10,). Ex 0%, but not Ex 3%, improved baroreflex bradycardia (0.26 ± 0.06 ms/mmHg, N = 6, vs 0.09 ± 0.03 ms/mmHg in 2K1C Sed, N = 11). Morphometric evaluation suggested concentric left ventricle hypertrophy in sedentary 2K1C rats. Ex 0% prevented concentric cardiac hypertrophy, increased cardiomyocyte diameter and decreased cardiac vasculature thickness in 2K1C rats. In contrast, in 2K1C, Ex 3% reduced the concentric remodeling and prevented the increase in cardiac vasculature wall thickness, decreased the cardiomyocyte diameter and increased collagen deposition. Renal morphometric analysis showed that Ex 3% induced an increase in vasculature wall thickness and collagen deposition in the left kidney of 2K1C rats. These data suggest that Ex 0% has more beneficial effects than Ex 3% in renovascular hypertensive rats.
Resumo:
Metabolic syndrome (MS) is a multifactorial disease involving inflammatory activity and endothelial dysfunction. The aim of the present study was to evaluate the relationship between the changes in lipoperoxidation, in immunological and biochemical parameters and nitric oxide metabolite (NOx) levels in MS patients. Fifty patients with MS (4 males/46 females) and 50 controls (3 males/47 females) were studied. Compared to control (Mann-Whitney test), MS patients presented higher serum levels (P < 0.05) of fibrinogen: 314 (185-489) vs 262 (188-314) mg/dL, C-reactive protein (CRP): 7.80 (1.10-46.50) vs 0.70 (0.16-5.20) mg/dL, interleukin-6: 3.96 (3.04-28.18) vs 3.33 (2.55-9.63) pg/mL, uric acid: 5.45 (3.15-9.65) vs 3.81 (2.70-5.90) mg/dL, and hydroperoxides: 20,689 (19,076-67,182) vs 18,636 (15,926-19,731) cpm. In contrast, they presented lower (P < 0.05) adiponectin: 7.11 (3.19-18.22) vs 12.31 (9.11-27.27) µg/mL, and NOx levels: 5.69 (2.36-8.18) vs 6.72 (5.14-12.43) µM. NOx was inversely associated (Spearman’s rank correlation) with body mass index (r = -0.2858, P = 0.0191), insulin resistance determined by the homeostasis model assessment (r = -0.2530, P = 0.0315), CRP (r = -0.2843, P = 0.0171) and fibrinogen (r = -0.2464, P = 0.0413), and positively correlated with hydroperoxides (r = 0.2506, P = 0.0408). In conclusion, NOx levels are associated with obesity, insulin resistance, oxidative stress, and inflammatory markers. The high uric acid levels together with reactive oxygen species generation may be responsible for the reduced NO levels, which in turn lead to endothelial dysfunction. The elevated plasma chemiluminescence reflecting both increased plasma oxidation and reduced antioxidant capacity may play a role in the MS mechanism.
Resumo:
The health-promoting effects of exercise training (ET) are related to nitric oxide (NO) production and/or its bioavailability. The objective of this study was to determine whether single nucleotide polymorphism of the endothelial NO synthase (eNOS) gene at positions -786T>C, G894T (Glu298Asp) and at the variable number of tandem repeat (VNTR) Intron 4b/a would interfere with the cardiometabolic responses of postmenopausal women submitted to physical training. Forty-nine postmenopausal women were trained in sessions of 30-40 min, 3 days a week for 8 weeks. Genotypes, oxidative stress status and cardiometabolic parameters were then evaluated in a double-blind design. Both systolic and diastolic blood pressure values were significantly reduced after ET, which was genotype-independent. However, women without eNOS gene polymorphism at position -786T>C (TT genotype) and Intron 4b/a (bb genotype) presented a better reduction of total cholesterol levels (-786T>C: before = 213 ± 12.1, after = 159.8 ± 14.4, Δ = -24.9% and Intron 4b/a: before = 211.8 ± 7.4, after = 180.12 ± 6.4 mg/dL, Δ = -15%), and LDL cholesterol (-786T>C: before = 146.1 ± 13.3, after = 82.8 ± 9.2, Δ = -43.3% and Intron 4b/a: before = 143.2 ± 8, after = 102.7 ± 5.8 mg/dL, Δ = -28.3%) in response to ET compared to those who carried the mutant allele. Superoxide dismutase activity was significantly increased in trained women whereas no changes were observed in malondialdehyde levels. Women without eNOS gene polymorphism at position -786T>C and Intron 4b/a showed a greater reduction of plasma cholesterol levels in response to ET. Furthermore, no genotype influence was observed on arterial blood pressure or oxidative stress status in this population.
Resumo:
Human serum paraoxonase contributes to the anti-atherogenic effect of high-density lipoprotein cholesterol (HDL-C) and has been shown to protect both low-density lipoprotein cholesterol (LDL-C) and HDL-C against lipid peroxidation. We investigated the effects of rosiglitazone on paraoxonase activity and metabolic parameters in patients with type 2 diabetes mellitus [50 patients (30 males, 20 females); mean±SD age: 58.7±9.2 years, body mass index: 28.2±4.1'kg/m2], in whom glucose control could not be achieved despite treatment with metformin, sulphonylurea, and/or insulin. The patients were given 4'mg/day rosiglitazone for 3 months in addition to their usual treatment. Serum paraoxonase activity, malondialdehyde, homocysteine, and lipid profile were measured at the time of initiation and at the end of therapy with rosiglitazone. After rosiglitazone therapy, serum levels of HDL-C, apolipoprotein A-1, and paraoxonase activity increased significantly (P<0.05) and malondialdehyde, homocysteine, lipoprotein(a), and glucose levels decreased significantly (P<0.05), but no significant changes in levels of total cholesterol and apolipoprotein B were observed. Triglyceride levels also increased significantly (P<0.05). Rosiglitazone treatment led to an improvement in glycemic control and to an increase in paraoxonase activity and HDL-C levels. Although rosiglitazone showed favorable effects on oxidant/antioxidant balance and lipid profile, further studies are needed to determine the effect of rosiglitazone on cardiovascular risk factors and cardiovascular morbidity and mortality.
Resumo:
Immobilization, used in clinical practice to treat traumatologic problems, causes changes in muscle, but it is not known whether changes also occur in nerves. We investigated the effects of immobilization on excitability and compound action potential (CAP) and the ultrastructure of the rat sciatic nerve. Fourteen days after immobilization of the right leg of adult male Wistar rats (n=34), animals were killed and the right sciatic nerve was dissected and mounted in a moist chamber. Nerves were stimulated at a baseline frequency of 0.2 Hz and tested for 2 min at 20, 50, and 100 Hz. Immobilization altered nerve excitability. Rheobase and chronaxy changed from 3.13±0.05 V and 52.31±1.95 µs (control group, n=13) to 2.84±0.06 V and 59.71±2.79 µs (immobilized group, n=15), respectively. Immobilization altered the amplitude of CAP waves and decreased the conduction velocity of the first CAP wave (from 93.63±7.49 to 79.14±5.59 m/s) but not of the second wave. Transmission electron microscopy showed fragmentation of the myelin sheath of the sciatic nerve of immobilized limbs and degeneration of the axon. In conclusion, we demonstrated that long-lasting leg immobilization can induce alterations in nerve function.
Resumo:
18F-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) is widely used to diagnose and stage non-small cell lung cancer (NSCLC). The aim of this retrospective study was to evaluate the predictive ability of different FDG standardized uptake values (SUVs) in 74 patients with newly diagnosed NSCLC. 18F-FDG PET/CT scans were performed and different SUV parameters (SUVmax, SUVavg, SUVT/L, and SUVT/A) obtained, and their relationship with clinical characteristics were investigated. Meanwhile, correlation and multiple stepwise regression analyses were performed to determine the primary predictor of SUVs for NSCLC. Age, gender, and tumor size significantly affected SUV parameters. The mean SUVs of squamous cell carcinoma were higher than those of adenocarcinoma. Poorly differentiated tumors exhibited higher SUVs than well-differentiated ones. Further analyses based on the pathologic type revealed that the SUVmax, SUVavg, and SUVT/L of poorly differentiated adenocarcinoma tumors were higher than those of moderately or well-differentiated tumors. Among these four SUV parameters, SUVT/Lwas the primary predictor for tumor differentiation. However, in adenocarcinoma, SUVmax was the determining factor for tumor differentiation. Our results showed that these four SUV parameters had predictive significance related to NSCLC tumor differentiation; SUVT/L appeared to be most useful overall, but SUVmax was the best index for adenocarcinoma tumor differentiation.
Resumo:
The aims of this study were to evaluate the forced oscillation technique (FOT) and pulmonary densitovolumetry in acromegalic patients and to examine the correlations between these findings. In this cross-sectional study, 29 non-smoking acromegalic patients and 17 paired controls were subjected to the FOT and quantification of lung volume using multidetector computed tomography (Q-MDCT). Compared with the controls, the acromegalic patients had a higher value for resonance frequency [15.3 (10.9-19.7) vs 11.4 (9.05-17.6) Hz, P=0.023] and a lower value for mean reactance [0.32 (0.21-0.64) vs 0.49 (0.34-0.96) cm H2O/L/s2, P=0.005]. In inspiratory Q-MDCT, the acromegalic patients had higher percentages of total lung volume (TLV) for nonaerated and poorly aerated areas [0.42% (0.30-0.51%) vs 0.25% (0.20-0.32%), P=0.039 and 3.25% (2.48-3.46%) vs 1.70% (1.45-2.15%), P=0.001, respectively]. Furthermore, the acromegalic patients had higher values for total lung mass in both inspiratory and expiratory Q-MDCT [821 (635-923) vs 696 (599-769) g, P=0.021 and 844 (650-945) vs 637 (536-736) g, P=0.009, respectively]. In inspiratory Q-MDCT, TLV showed significant correlations with all FOT parameters. The TLV of hyperaerated areas showed significant correlations with intercept resistance (rs=−0.602, P<0.001) and mean resistance (rs=−0.580, P<0.001). These data showed that acromegalic patients have increased amounts of lung tissue as well as nonaerated and poorly aerated areas. Functionally, there was a loss of homogeneity of the respiratory system. Moreover, there were correlations between the structural and functional findings of the respiratory system, consistent with the pathophysiology of the disease.
Resumo:
Alfa Laval Aalborg Oy designs and manufactures waste heat recovery systems utilizing extended surfaces. The waste heat recovery boiler considered in this thesis is a water-tube boiler where exhaust gas is used as the convective heat transfer medium and water or steam flowing inside the tubes is subject to cross-flow. This thesis aims to contribute to the design of waste heat recovery boiler unit by developing a numerical model of the H-type finned tube bundle currently used by Alfa Laval Aalborg Oy to evaluate the gas-side heat transfer performance. The main objective is to identify weaknesses and potential areas of development in the current H-type finned tube design. In addition, numerical simulations for a total of 15 cases with varying geometric parameters are conducted to investigate the heat transfer and pressure drop performance dependent on H-type fin geometry. The investigated geometric parameters include fin width and height, fin spacing, and fin thickness. Comparison between single and double tube type configuration is also conducted. Based on the simulation results, the local heat transfer and flow behaviour of the H-type finned tube is presented including boundary layer development between the fins, the formation of recirculation zone behind the tubes, and the local variations of flow velocity and temperature within the tube bundle and on the fin surface. Moreover, an evaluation of the effects of various fin parameters on heat transfer and pressure drop performance of H-type finned tube bundle has been provided. It was concluded that from the studied parameters fin spacing and fin width had the most significant effect on tube bundle performance and the effect of fin thickness was the least important. Furthermore, the results suggested that the heat transfer performance would increase due to enhanced turbulence if the current double tube configuration is replaced with single tube configuration, but further investigation and experimental measurements are required in order to validate the results.